
Untyped Lambda Calculus

August 29, 2013

1 Introduction

The λ-calculus is a way of describing computations. It provides two facilities - a way to construct functions,
and a way to apply (evaluate) them. The λ-calculus is simple, yet powerful enough that most pure functional
features are just syntactic sugar defined over it. Thus it is one of the simplest languages which you can do
functional programming in. 1

2 Syntax

The syntax in BNF:

variable = ‘v‘ | variable ‘′‘

λ-term = variable | ‘(‘λ-term λ-term‘)‘ | ‘(‘λvariable λ-term‘)′

e.g. The following are λ-terms

v, v′, (v′v), (λv(v′v))

Since the fully parenthesized syntax is tedious to read, we adopt a few conventions.

1. We will use letters in lower case to indicate variables and letters in upper case to indicate λ-terms in
general.

2. (λx · e1e2) is (λx(e1e2)) - that is, the scope of a variable extends as far as possible, either to the first
close parenthesis ’(’ symbol whose opening ‘)‘ occurs to the left of λ, or, to the end of the expression,
whichever occurs first. [2]

3. Application associates to the left. Thus e1e2e3 is (e1e2)e3.

1The material in this is taken from various sources, but mostly it is an adaptation of [1] and [2].

1

4. λxyx · e is (λx (λy (λz xyz))).

Example 2.0.1. The proper parenthesization of

(λfλx · f(f(x)))

is
(λf (λxf(fx))) .

Evaluating a λ-term is through a process called β reduction. Intuitively, this corresponds to “executing”
a program in a programming language. We will now introduce the theory behind β-reductions.

3 Reductions

The basic evaluation procedure in λ-calculus is that of substitution.

We are already familiar with this process in mathematics. For example, we can talk of the integral∫ b
a f(x, y)dx. If we substitute y = 7 in the integral, we get

∫ b
a f(x, 7)dx.

Further substitutions can be made, say f = sin, a = 0 and b = 1. This yields the integral
∫ 1
0 sin(x, 7)dx.

This outlines a process of calculation through a series of substitutions.

Do all kinds of substitutions make sense? For example, substituting y = 7 in the expression
∫ b
a f(x, y)dx

to obtain
∫ b
a f(x, 7)dx made sense. However, substituting x = 7 in the resulting expression to obtain∫ b

a f(7, 7)d7 obviously does not make sense: the distinction is that x is a bound variable in
∫ b
a f(x, y)dx

where as y is free in it. Substitution can be done only for free occurrences of variables.

We now define the substitution process in λ-calculus. There are two ways in which to do this. Both
essentially try to define which variables can be substituted, and which cannot be.

The first approach directly defines the free occurences, that is, the ones which can be substituted. The
second ensures that the sets of free variables and that of bound variables are disjoint, by a process of
renaming conflicting variables.

The first approach is as follows. First, we need to define what are the free variables in a given λ-term.

Definition 3.0.2. The set of free variables in a given term M , denoted fv(M) is recursively defined as
follows.

fv[x] = x

fv[(MN)] = fv(M) ∪ fv(N)

fv[(λxM)] = fv(M) \ {x}.

All variables which are not free in an expression M is called bound. Alternatively, a variable is bound if
it occurs under the scope of some λ in M .

Definition 3.0.3. A closed λ-term or a combinator is an λ-term with no free variables.

2

We can now define the substitution process.

Definition 3.0.4. The process of substituting N for free occurrences of x in M , denoted M [x := N], is
recursively defined as follows.

x[x := N] ≡ N

y[x := N] ≡ y

(M1M2)[x := N] ≡ (M1[x := N] M2[x := N])

(λy ·M)[x := N] ≡ λy ·M [x := N]

(λx ·M)[x := N ≡ (λx ·M).

Example 3.0.5. In the term λxy · xyz, the free variable is z and the bound variables are x and y.

In the term (λx · (λy · yz) x) , the variable z is free, and x and y are bound.

The second process of defining β-substitution is as follows. The rule called α-renaming, says that bound
variables can be renamed to get equivalent expressions. For example,

(λx · x) = (λy · y).

The formal definition of α renaming is given inductively, similar to that of the process of identifying free
variables. We omit this approach, preferring the first approach of directly identifying free occurrences.

Using the substitution rule, we can now explain λ-application. This is the way in which λ-terms are
“reduced”, typically to simpler forms

Definition 3.0.6. The result of the application (λxM)N is the λ-term obtained by replacing all free occur-
rences of x in M by N . We say that (λxM)N β-reduces to M [x := N], which we denote by

(λxM)N
β−→M [x := N].

Example 3.0.7. [2] Let

M = (λfx · f(f(x)))

N = (λy · xy).

β-reduce the λ-term MNN . That is, β-reduce (MN)N .

There is a third rule in the lambda calculus, called η-conversion. It is a rule that says that f and (λx ·fx)
are equivalent. This is because for any λterm C, fC is the same as (λx · fx)C.

Thus there are just three rules for defining the semantics in lambda calculus - α conversion, β-substitution
and η-conversion.

3

3.1 Reduction orders

Definition 3.1.1. A term is said to be in normal form if it cannot be β-reduced any further.

When a sequence of reductions encounters a normal form, the reduction terminates.

This introduces two natural questions: First, does every sequence of reductions terminate? If every
sequence terminates, does every reduction sequence terminate in the same normal form?

The reduction sequence might not terminate.

For example, consider
(λx · xx) (λx · xx).

This reduction sequence results in the same expression.

Even worse, the size of the term may keep increasing.

Example 3.1.2. [2]

(λf · (λx · f(xx)) (λx · f(xx)))
β−→ (λf · f((λxf(xx)) (λxf(xx))))

So the answer to our first question is no. Now, is the reduction order unique? There might be multiple
terms to be substituted in a given term. Depending on the order of substitution, some reductions might
terminate, and others might not.

Example 3.1.3. Recall the earlier example. If M = (λx · xx), then the β-reduction of MM does not
terminate.

Suppose we have a projection function P = (λxy ·x), that projects out one of the arguments alone, then
we know that the reduction PMM terminates in M .

You can use these two observations to construct two reduction sequences for the following expression,
one which terminates, and another which does not.

(λxyz · xz(yz))PMM.

So the answer to even our second question is no.

3.2 Church-Rosser Theorem

However, we could ask for a simpler requirement. If two reduction sequences terminate, do they terminate
in the same normal form? The following is a classical result in λ-calculus.

Theorem 3.2.1. If M
∗−→M1 and M

∗−→ N1, then there exists a P such that M1
∗−→ P and N1

∗−→ P .

That is, there is at most one normal form of any λ-term. Of course, some terms may not have normal
forms at all, as discussed in the previous subsection.

We omit the proof of this theorem.

4

4 Abstract Data Types

We now see how to implement some abstract data types in λ-calculus.

4.1 Numbers

One encoding of the numbers we consider is the following.

True =⇒ 0 ≡ λxy.y
n = λxy.M =⇒ n+ 1 ≡ λxy.x(M)

Thus

1 ≡ λxy · x(y)

2 ≡ λxy · x(x(y))

3 ≡ λxy · x(x(x(y)))

and so on.

One way to think about this encoding is that it is the unary representation of natural numbers. Consider the

expression 0xy = y. This can be thought of as a “blank board”. The expression nxy can be thought of as one obtained

by making n number of x marks on the blank board.

This notation makes it possible for us to do arithmetic operations.

• Successor is defined to satisfy Successor(n) = n+1. This can be encoded as the function

(λnxy · x(nxy))

Verify that Successor(n) is a representation of n+ 1.

• Addition of two numbers m and n should return m+ n.

(λmnxy ·mx (nxy)).

• Multiplication of two numbers m and n should return their product.

(λmnx ·m(nx)).

5

4.2 Booleans

Define False to be (λxy · y). We denote this by the reserved term F. Note that False has the same
representation as 0. True is defined as (λxy · x). We denote it consistently by T.

Now, it is possible to encode conditional blocks in the λ-calculus.

An if block, of the form [if E is true then M else N] can be encoded as

(λemn · emn).

Verify that (λemn · emn) T = m and (λemn · emn) F = n.

4.3 Lists

We define the empty list to be nil = (λxy · y). Again, this is the same representation as that of 0 and of
False.

A list is essentially a pair of values. The first is a “head” element of the list. The second element is the
“tail” of the list, which is the list without the first element.

Cons, the list constructor, is defined as follows.

Cons = (λv`z · zv`).

For example,

Cons a nil = (λz · zanil)

Cons b (Cons a nil) = (λz · zb(Cons a nil)).

The reason Cons has been defined in this manner, is that you can apply the following two functions to a
list to get the head, and the tail of the list, respectively. This encoding uses what are called “Church pairs”.

Every list has a head, which is the first element of the list, and a tail, which is the rest of the list.

Head = (λf · f(λxy.x)).

Tail = (λf · f(λxy.y)).

For example,

6

Head (Cons a nil) = Head (λz · za nil)

= (λf · f(λxy · x))(λz · za nil)

= (λz · za nil)(λxy · x)

= (λxy · x)a nil

= a.

Verify that Tail (Cons a nil) = nil .

5 Recursion and the Y combinator

The λ-calculus does not have the provision of a function referring to itself. We will construct a function
which will enable us to do recursion in the λcalculus.

Any recursive function f can be written in the form f = gf . That is, f is a fixed point of the function g.

There is a function Y which finds the fixed point of any function. In particular, for the function g,
Y g = gY g. Thus, f = Y g is a definition of f .

The Y combinator is (λk · (λx · k(xx))(λx · k(xx))).

We can verify that Y g = gY g, thus proving that Y g is a fixed point of g.

Y g = (λk · (λx · k(xx))(λx · k(xx)))g (1)

= (λx · g(xx))(λx · g(xx)) (2)

= g((λx · g(xx))(λx · g(xx))) (3)

= g(Y g) [from (2), (3)] (4)

References

[1] H. Barendregt and E. Barendsen. Introduction to the lambda calculus.

[2] Amitabha Sanyal. Notes on lambda calculus.

7

Addendum

Recursion using the Y-combinator

How do we do recursion in the λ-calculus? For a moment, let us consider how recursion and self-referential
data structures work in a programming language. Suppose you have

factorial(n) :

if n==0 then 1 else n*factorial(n-1)

this needs the facility for a function to be defined in terms of itself. How do we accomplish this? One
way to easily handle this in a programming language is using symbol tables and multi-pass processing. In
the first pass, for example, factorial is processed as a function. So an entry is made in the symbol table
corresponding to the name factorial. This function calls another function (in this case, itself, but this is
not significant) - in the first pass, we can insert a mark to say that the call is to is some entry in the symbol
table, which we will resolve later.

After the first pass, all names that the program defines will be known, so the symbol table will be
complete.

In another pass, we will go through all the marks we made earlier, and fill in the corresponding entries
from the symbol table. Thus, names, symbol table and multi-pass processing is one way to enable recursion
in a language.

How will a λ-term refer to itself? It has no “name”, hence it cannot refer to itself by name.

For this, we view a recursive λ-term as a fixed point of a sequence of definitions, and use the Y combinator.
To see this, it is probably best to consider the following example, which is “almost” the definition of the
factorial function.

f = (λgn · if 0 then 1 else (multiply n (g (predecessor n)))).

Now, consider Y f . This is a fixed-point of f - that is, f(Y f) = Y f . This means that

f(Y f) = (λn · if 0 then 1 else (multiply n

((Y f) (predecessor n)))) = Y f.

where the first equality follows by the rule for application, and the second equality follows since Y f is a
fixed point of f . In particular,

Y f = (λn · if 0 then 1 else (multiply n

((Y f) (predecessor n)))).

Thus, Y f is the “factorial” function!

This trick can be applied to recursively define a λ-term in terms of itself - consider a λ-term f which
takes an argument g and calls g wherever the final recursive call occurs. Now, Y f is the recursive definition
we originally wanted.

How would you implement mutually recursive λ-terms? Explore this.

8

	Introduction
	Syntax
	Reductions
	Reduction orders
	Church-Rosser Theorem

	Abstract Data Types
	Numbers
	Booleans
	Lists

	Recursion and the Y combinator

