
CS350 Semester I, 2015-16

Homework 3

Due Date: October 29, 2015

1 . Non-preemptive multitasking : extend the oz kernel language in assignment 2 with the statement

thread 〈s〉 end

which works as follows. You should extend the semantic stack in Assignment 2 to a semantic multistack.
Each stack in the multistack will correspond to a thread in the code.

If the top statement in the currently active semantic stack is (thread 〈s〉 end,E), then create a new
semantic stack and push (〈s〉,E) onto it.

There will be no thread scheduler. The execution continues with the previously active stack until it
becomes empty.

Once a stack completes (or suspends), you should pick another non-empty stack and continue execution
until it completes and so on. If there is no non-empty stack, or if every stack is suspended, then the execution
completes. [25 points]

(All other questions carry 10 points each.)

2 . Write a program with two threads - the first thread produces a stream of random bits using OS.rand

or OS.randLimits and stores it in a stream, say Xs. The second should produce a stream Ys whose n
th

element should be the average of the first n bits of Xs. Ys should be written as a self-referential stream.

3 . Write a lazy version of append which can concatenate two finite lists.

4 . Write a lazy version of QuickSort to sort a finite list of integers. You might want to write a lazy
version of Filter.

5 . Write a version of the Hamming Problem which uses threads instead of (lazy) streams.

6 . In the message-passing model, implement a non-deterministic conditional block

NSelect [X1#S1 X2#S2 ... Xn#Sn true#Sn+1]

which acts as follows: if any of X1, ..., Xn is true, then non-deterministically select one, say Xi, and
execute the corresponding statement Si. (Automatically, if all of them are false, Sn+1 will be executed).
However, you must also ensure the following: if all of X1, ..., Xn are unbound, then the execution should
suspend until at least one of them gets bound (to true or false).

7 . Write a procedure

Barrier [P1 P2 ... Pn]

which takes a list of procedures, and executes each procedure in a thread by itself. The main thread
should wait until all the procedures have finished, and only then exit.

1


