
CS 350 2024-25 Sem I Lecture 6

Satyadev Nandakumar

August 20, 2024

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 1 / 22

Outline

1 Programming technique - Laziness

2 Programming technique - tail recursion

3 Programming technique - Iteration

4 Omitted: Programming technique - continuation-passing style

5 Programming technique - memoization

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 2 / 22

Outine

1 Programming technique - Laziness

2 Programming technique - tail recursion

3 Programming technique - Iteration

4 Omitted: Programming technique - continuation-passing style

5 Programming technique - memoization

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 3 / 22

Laziness: introduction

Haskell uses lazy evaluation.
Values are not produced unless they are required by the calling function
(consumer-driven).
So we can directly work with in�nite data structures without the program
hanging.
Example: take 10 [1..] will produce [1,2,3,4,5,6,7,8,9,10]

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 4 / 22

Using laziness to deal with in�nite data structures

We will see some basic examples. The general style is called stream-based

programming.

In�nite stream of ones

ones = 1 : ones

In�nite stream of integers

adds xs ys = (head xs)+(head ys) : (adds (t a i l xs) (t a i l ys))
i n t s = 1 ++ (adds ones i n t s)

Recurrence relation for stream of integers

i n t s ! ! i = (ones ! ! (i =1)) + (i n t s ! ! (i =1))

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 5 / 22

Stream of factorials of integers

Recurrence relation for stream of factorials

i n t s ! ! i = i+1
f a c t o r i a l s ! ! 0 = 1
f a c t o r i a l s ! ! i = (i n t s ! ! (i =1)) * (f a c t o r i a l s ! ! (i =1))

in�nite stream of factorials

p roduc t s xs ys = (head xs)* (head ys) :
(p r oduc t s (t a i l xs) (t a i l ys))

f a c t o r i a l s = [1] ++ produc t s (t a i l i n t s) f a c t o r i a l s

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 6 / 22

Outine

1 Programming technique - Laziness

2 Programming technique - tail recursion

3 Programming technique - Iteration

4 Omitted: Programming technique - continuation-passing style

5 Programming technique - memoization

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 7 / 22

Tail recursion

If the last operation in a recursive function is a recursive call, then it is
referred to as tail recursion.

Why is it important? Recursive calls involve deep stacks. Tail recursion
helps reduce the depth of these call stacks.

Example of non-tail recursive code

f a c t 1 = 1
f a c t n = (*) n (f a c t (n=1))

The last operation in the inductive case is (*), so the function is not
tail-recursive

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 8 / 22

Tail recursion

If the last operation in a recursive function is a recursive call, then it is
referred to as tail recursion.
Why is it important? Recursive calls involve deep stacks. Tail recursion
helps reduce the depth of these call stacks.

Example of non-tail recursive code

f a c t 1 = 1
f a c t n = (*) n (f a c t (n=1))

The last operation in the inductive case is (*), so the function is not
tail-recursive

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 8 / 22

Tail recursion

If the last operation in a recursive function is a recursive call, then it is
referred to as tail recursion.
Why is it important? Recursive calls involve deep stacks. Tail recursion
helps reduce the depth of these call stacks.

Example of non-tail recursive code

f a c t 1 = 1
f a c t n = (*) n (f a c t (n=1))

The last operation in the inductive case is (*), so the function is not
tail-recursive

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 8 / 22

Calling frames

illustration of calling frames

+---+

|fact 4 = 4 * +---+ |

| | fact 3 = 3 * +---------------------------+| |

| | | fact 2 = 2 * +----------+||| |

| | | | fact 1=1 |||| |

| | | +----------+||| |

| | +--------------------------+|| |

| +---+ |

+---+

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 9 / 22

Converting to tail-recursive version

To convert to tail-recursive version, we consider the iterative factorial.

evaluation

f a c t 4 = 4 * 3 * 2 * 1

iterative factorial: pseudocode

factorial(n){

product = 1

i = n

while i = 1

product = product * i

i-1

return product

}

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 10 / 22

Loop variables

We used two variables, product and i, to keep track of the computation.
product : partial product n*(n-1)*...*i
Now we write a recursive factorial where computation is updated via extra

arguments which imitate loop variables.

iterative factorial

f a c t o r i a l n = f a c t_ i t e r 1 n n
where

f a c t_ i t e r product i n =
i f i >1
then f a c t_ i t e r (product* i) (i =1) n
e l s e product

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 11 / 22

How it's done

1 fact_iter is the iterative version. It has extra variables, i and
product which are precisely the loop variables.

2 updating variable is done while doing recursive call

3 The last operation in each inductive case is the recursive call (or
returning a variable).

4 fact_iter needs correct initialization of i and product. Hence
control access using a global function which initializes correctly, and
do not give access to the user. (see where)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 12 / 22

Main insight in tail recursion

If the last operation in the calling function is a recursive call, then, after
returning, there is nothing more to do in the calling function.
Hence, we can remove the calling function frame immediately on recursion.
This reduces the depth of the stack!!

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 13 / 22

Outine

1 Programming technique - Laziness

2 Programming technique - tail recursion

3 Programming technique - Iteration

4 Omitted: Programming technique - continuation-passing style

5 Programming technique - memoization

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 14 / 22

Introduction to iterative style

Iterative style can be done in Haskell via:

1 �Iterative Style functional programming�

2 List comprehension.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 15 / 22

Example problem

Find the maximum of a list (iterative style)

Pseudocode

max = $-\infty$

i=0

while i<length(list)

if list[i] > max

max = list[i]

i=i+1

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 16 / 22

Main idea (iterative style)

Loop variables are those variables which are updated in the body of the
loop.

1 Write a recursive version with the �loop variables� as extra arguments
to the recursive call.

2 Instead of updating variables in the loop, recurse with the updated
value of the loop variables.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 17 / 22

Main idea (iterative style)

Loop variables are those variables which are updated in the body of the
loop.

1 Write a recursive version with the �loop variables� as extra arguments
to the recursive call.

2 Instead of updating variables in the loop, recurse with the updated
value of the loop variables.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 17 / 22

Example problem (continued)

loop variables: i, max

Iterative code

max_iter i max_curr xs =
i f i==(length (xs)=1)
then max_curr
e l s e

i f l i s t ! ! i > max_curr
then max_iter (i +1) == updated

(l i s t ! ! i) == updated

xs
e l s e max_iter (i +1) == updated

max_curr == unchanged

xs

maximum xs = max_iter 0 (=1) xs
Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 18 / 22

Outine

1 Programming technique - Laziness

2 Programming technique - tail recursion

3 Programming technique - Iteration

4 Omitted: Programming technique - continuation-passing style

5 Programming technique - memoization

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 19 / 22

Can we generalize tail recursion to functions with more than one recursive
calls to itself? e.g. quick sort, summing elements in a tree etc.?
The 3 envelopes joke. How were the envelopes prepared?
Continuation-passing style generalizes the insight in tail recursion to
functions with multiple arguments.
It also can implement generalized control-structures. (e.g. exit from the
third level to the �rst level in a 3-level nested loop, implementing
exceptions etc.)

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 20 / 22

Beyond the scope of this course.

Outine

1 Programming technique - Laziness

2 Programming technique - tail recursion

3 Programming technique - Iteration

4 Omitted: Programming technique - continuation-passing style

5 Programming technique - memoization

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 20 / 22

Avoiding multiple recursive calls for the same value

The standard de�nion of the nth Fibonacci number:

nth Fibonacci number

f i b 0 = 1
f i b 1 = 1
f i b n = (f i b (n=1)) + (f i b (n=2))

For example, fib 4 = (fib 3) + (fib 2) = (fib 2)+(fib 1) +

(fib 1) + (fib 0). Here, fib(1) is called multiple times.
Memoization: store precomputed values in a table.

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 21 / 22

Example: memoized �bonacci

We can utilize laziness of Haskell to implement a memoized version of
Fibonacci.
The �lookup table� is a list of integers, where the nth element is fib n.

memoizing fib using lists

fib_memo = (map f ib_aux [0 . .] ! !)
where

f ib_aux 0 = 1
f ib_aux 1 = 1
f ib_aux n = fib_memo (n=2) + fib_memo (n=1)

Question:

What happens if we change the �rst line to fib_memo n = (map fib_aux

[0..]) !! n ? Why is the changed version slower?

Satyadev Nandakumar CS 350 2024-25 Sem I Lecture 6 August 20, 2024 22 / 22

	Programming technique - Laziness
	Programming technique - tail recursion
	Programming technique - Iteration
	Omitted: Programming technique - continuation-passing style
	Programming technique - memoization

