
CS 350 2024-25 Semester I

Satyadev Nandakumar

August 9, 2024

Outline

Lecture 4 outline

I Type of map, and �lter in detail

I foldr

I composition

I Using higher order functions
I Aggregation
I List of primes
I word puzzle

Type of map

map f [] = []
map f (x : x r) = (f x) : (map f x r)

Suppose xs::[a].
Then f should take as input, an element of type a.

There is no constraint on the output of f.
So f::a -> b.
Hence the output of map will be a list of type [b].

map : : (a=>b) => [a] => [b]

Type of map

map f [] = []
map f (x : x r) = (f x) : (map f x r)

Suppose xs::[a].
Then f should take as input, an element of type a.
There is no constraint on the output of f.
So f::a -> b.

Hence the output of map will be a list of type [b].

map : : (a=>b) => [a] => [b]

Type of map

map f [] = []
map f (x : x r) = (f x) : (map f x r)

Suppose xs::[a].
Then f should take as input, an element of type a.
There is no constraint on the output of f.
So f::a -> b.
Hence the output of map will be a list of type [b].

map : : (a=>b) => [a] => [b]

Type of map

map f [] = []
map f (x : x r) = (f x) : (map f x r)

Suppose xs::[a].
Then f should take as input, an element of type a.
There is no constraint on the output of f.
So f::a -> b.
Hence the output of map will be a list of type [b].

map : : (a=>b) => [a] => [b]

Type of filter

Filter returns only those elements in a list which satisfy a boolean
function (i.e. a function that returns Bool type).

f i l t e r pred [] = []
f i l t e r pred (x : x r) = i f (pred x) then (x : (f i l t e r pred x r)) e l s e f i l t e r pred x r

Suppose xs::[a].

Then pred :: a -> Bool.
Since �lter should �lter a subset of xs, the output list must have
type [a].
Thus, we have

f i l t e r : : (a=>Bool) => [a] => [a]

Type of filter

Filter returns only those elements in a list which satisfy a boolean
function (i.e. a function that returns Bool type).

f i l t e r pred [] = []
f i l t e r pred (x : x r) = i f (pred x) then (x : (f i l t e r pred x r)) e l s e f i l t e r pred x r

Suppose xs::[a].
Then pred :: a -> Bool.

Since �lter should �lter a subset of xs, the output list must have
type [a].
Thus, we have

f i l t e r : : (a=>Bool) => [a] => [a]

Type of filter

Filter returns only those elements in a list which satisfy a boolean
function (i.e. a function that returns Bool type).

f i l t e r pred [] = []
f i l t e r pred (x : x r) = i f (pred x) then (x : (f i l t e r pred x r)) e l s e f i l t e r pred x r

Suppose xs::[a].
Then pred :: a -> Bool.
Since �lter should �lter a subset of xs, the output list must have
type [a].

Thus, we have

f i l t e r : : (a=>Bool) => [a] => [a]

Type of filter

Filter returns only those elements in a list which satisfy a boolean
function (i.e. a function that returns Bool type).

f i l t e r pred [] = []
f i l t e r pred (x : x r) = i f (pred x) then (x : (f i l t e r pred x r)) e l s e f i l t e r pred x r

Suppose xs::[a].
Then pred :: a -> Bool.
Since �lter should �lter a subset of xs, the output list must have
type [a].
Thus, we have

f i l t e r : : (a=>Bool) => [a] => [a]

The foldr function.

Consider the task of summing elements of a list.
We start with an initial value of 0,
and keep adding the elements of the list in sequence. We could
write

a ddL i s t [] = 0
addL i s t (x : x r) = x+(addL i s t x r)

How about product?

p r o d L i s t [] = 1
p r o d L i s t (x : x r) = x *(p r o d L i s t x r)

These codes look very similar. The only di�erence is that 0 is
replaced with 1, and + with *.
Can we generalize this?

The foldr function.

Consider the task of summing elements of a list.
We start with an initial value of 0,
and keep adding the elements of the list in sequence. We could
write

a ddL i s t [] = 0
addL i s t (x : x r) = x+(addL i s t x r)

How about product?

p r o d L i s t [] = 1
p r o d L i s t (x : x r) = x *(p r o d L i s t x r)

These codes look very similar. The only di�erence is that 0 is
replaced with 1, and + with *.
Can we generalize this?

The foldr function.

Consider the task of summing elements of a list.
We start with an initial value of 0,
and keep adding the elements of the list in sequence. We could
write

a ddL i s t [] = 0
addL i s t (x : x r) = x+(addL i s t x r)

How about product?

p r o d L i s t [] = 1
p r o d L i s t (x : x r) = x *(p r o d L i s t x r)

These codes look very similar. The only di�erence is that 0 is
replaced with 1, and + with *.
Can we generalize this?

The foldr function.

Consider the task of summing elements of a list.
We start with an initial value of 0,
and keep adding the elements of the list in sequence. We could
write

a ddL i s t [] = 0
addL i s t (x : x r) = x+(addL i s t x r)

How about product?

p r o d L i s t [] = 1
p r o d L i s t (x : x r) = x *(p r o d L i s t x r)

These codes look very similar. The only di�erence is that 0 is
replaced with 1, and + with *.
Can we generalize this?

Deriving foldr

The components are:

1. a value for the empty list

2. a binary function (+ or * in the previous examples)

3. a list of elements

addList [1,2,3] operates as (1+(2+(3+0)))
prodList [10,20,30] operates as (10*(20*(30*1)))
Abstracting,

f o l d r op z [] = z
f o l d r op z (x : x r) = x ` op ` (f o l d r op z x r)

Remember that 2 argument function op can be applied to
arguments as op x y or x `op` y.

Deriving foldr

The components are:

1. a value for the empty list

2. a binary function (+ or * in the previous examples)

3. a list of elements

addList [1,2,3] operates as (1+(2+(3+0)))
prodList [10,20,30] operates as (10*(20*(30*1)))
Abstracting,

f o l d r op z [] = z
f o l d r op z (x : x r) = x ` op ` (f o l d r op z x r)

Remember that 2 argument function op can be applied to
arguments as op x y or x `op` y.

Deriving foldr

The components are:

1. a value for the empty list

2. a binary function (+ or * in the previous examples)

3. a list of elements

addList [1,2,3] operates as (1+(2+(3+0)))
prodList [10,20,30] operates as (10*(20*(30*1)))
Abstracting,

f o l d r op z [] = z
f o l d r op z (x : x r) = x ` op ` (f o l d r op z x r)

Remember that 2 argument function op can be applied to
arguments as op x y or x `op` y.

Type of foldr

Let xs :: [a].
Let z :: b.
Then op:: a -> b -> b.

(Why is the return type b? Because that will be the second
argument to the upper level op.)
Thus we have

f i l t e r : : (a=>b=>b) => b => [a] => b

Type of foldr

Let xs :: [a].
Let z :: b.
Then op:: a -> b -> b.
(Why is the return type b? Because that will be the second
argument to the upper level op.)
Thus we have

f i l t e r : : (a=>b=>b) => b => [a] => b

Programming using higher-order functions.

Big tip: think of functions as changing lists to lists, as far as
possible. We will see examples.

List of primes

Base 60

Why did Babylonians use base 60? (sexagesimal)

A word puzzle

A game: given a word like "food", see whether you convert it into
another word, like "soul", using �ve transition words, where each
word di�ers from the immediately previous one by exactly one word.
For example, changing "Foot" into "Ball"

1. Foot

2. Food

3. Fold

4. Bold

5. Bald

6. Ball

Write a Haskell program, that, given two words each having length
4, outputs a sequence of �ve transition words if a sequence exists,
and otherwise outputs the empty list.

