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Type of map

map f [ ] = [ ]
map f ( x : x r ) = ( f x ) : (map f x r )

Suppose xs::[a].
Then f should take as input, an element of type a.

There is no constraint on the output of f.
So f::a -> b.
Hence the output of map will be a list of type [b].

map : : ( a=>b) => [ a ] => [ b ]
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Type of filter

Filter returns only those elements in a list which satisfy a boolean
function (i.e. a function that returns Bool type).

f i l t e r pred [ ] = [ ]
f i l t e r pred ( x : x r ) = i f ( pred x ) then ( x : ( f i l t e r pred x r ) ) e l s e f i l t e r pred x r

Suppose xs::[a].

Then pred :: a -> Bool.
Since �lter should �lter a subset of xs, the output list must have
type [a].
Thus, we have

f i l t e r : : ( a=>Bool ) => [ a ] => [ a ]
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The foldr function.

Consider the task of summing elements of a list.
We start with an initial value of 0,
and keep adding the elements of the list in sequence. We could
write

a ddL i s t [ ] = 0
addL i s t ( x : x r ) = x+( addL i s t x r )

How about product?

p r o d L i s t [ ] = 1
p r o d L i s t ( x : x r ) = x *( p r o d L i s t x r )

These codes look very similar. The only di�erence is that 0 is
replaced with 1, and + with *.
Can we generalize this?
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Deriving foldr

The components are:

1. a value for the empty list

2. a binary function (+ or * in the previous examples)

3. a list of elements

addList [1,2,3] operates as (1+(2+(3+0)))
prodList [10,20,30] operates as (10*(20*(30*1)))
Abstracting,

f o l d r op z [ ] = z
f o l d r op z ( x : x r ) = x ` op ` ( f o l d r op z x r )

Remember that 2 argument function op can be applied to
arguments as op x y or x `op` y.
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Type of foldr

Let xs :: [a].
Let z :: b.
Then op:: a -> b -> b.

(Why is the return type b? Because that will be the second
argument to the upper level op.)
Thus we have

f i l t e r : : ( a=>b=>b) => b => [ a ] => b
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Programming using higher-order functions.

Big tip: think of functions as changing lists to lists, as far as
possible. We will see examples.



List of primes



Base 60

Why did Babylonians use base 60? (sexagesimal)



A word puzzle

A game: given a word like "food", see whether you convert it into
another word, like "soul", using �ve transition words, where each
word di�ers from the immediately previous one by exactly one word.
For example, changing "Foot" into "Ball"

1. Foot

2. Food

3. Fold

4. Bold

5. Bald

6. Ball

Write a Haskell program, that, given two words each having length
4, outputs a sequence of �ve transition words if a sequence exists,
and otherwise outputs the empty list.


