
CS350 2024-25 Sem I

Satyadev Nandakumar

August 7, 2024

Outline

Lecture 3 contents

de�ning and applying simple functions

Multi-argument functions

Standard Prelude

The library of standard functions.

1. Open ghci

2. Prelude.hs is automatically loaded.

3. type :browse to see all functions loaded from Prelude

4. Try :info take, :doc take, and :type take

Function application

I If foo is a function with 2 arguments, you can apply the
function as

foo x y where x and y are arguments.

I Function application has higher priority than any other
operation.

This means

f a + b

is

(f a)+b

I Question: Is f g x the same as f (g x)?

(No!, the �rst is taken as 2 arguments to a 2 argument function.)

Function application

I If foo is a function with 2 arguments, you can apply the
function as

foo x y where x and y are arguments.

I Function application has higher priority than any other
operation.

This means

f a + b

is

(f a)+b

I Question: Is f g x the same as f (g x)?

(No!, the �rst is taken as 2 arguments to a 2 argument function.)

Writing haskell scripts

I Comments : lines starting with --

I Save your �le as <�lename>.hs

I Either start ghci and type load <filename>.hs

I Or, if your code has a main, then compile it as ghc
<filename>.hs

I In ghci, after any change in �le, you can type :reload

Functions on basic types

plus

p l u s a b = a+b

isPositive

The following code uses guards

i s P o s i t i v e n | n<= 0 = False

| otherwise = True

We can also use conditionals

i s P o s i t i v e 2 n = i f n<=0 then False e l s e True

Functions on basic types

plus

p l u s a b = a+b

isPositive

The following code uses guards

i s P o s i t i v e n | n<= 0 = False

| otherwise = True

We can also use conditionals

i s P o s i t i v e 2 n = i f n<=0 then False e l s e True

Functions on basic types

plus

p l u s a b = a+b

isPositive

The following code uses guards

i s P o s i t i v e n | n<= 0 = False

| otherwise = True

We can also use conditionals

i s P o s i t i v e 2 n = i f n<=0 then False e l s e True

Lambda expressions

Functions can have no name (anonymous)

Example:

(\ x => x+1)

is an anonymous function.

(\ x => x+1) 2

evaluates to 3.
The \ is called lambda, since it reminds us of λ, the binding symbol
used in λ calculus, after which Haskell is modeled.

Functions with list arguments

Pattern-matching

Length of a list

Reversing a list

Polymorphism

Try equality on lists!

Length

What is polymorphism?

Look at the type of the function. If it has a type variable, then the
function is polymorphic.

: t l e n

outputs

Num p : : [a] => p

a and p are type variables. The function maps list of elements of
any type (represented by the type variable a) to a number.

Polymorphism

Try equality on lists!

Length

What is polymorphism?

Look at the type of the function. If it has a type variable, then the
function is polymorphic.

: t l e n

outputs

Num p : : [a] => p

a and p are type variables. The function maps list of elements of
any type (represented by the type variable a) to a number.

Higher-order programming with functions

Map

Filter

Fold

Understand the composition function in base

I Type :browse

I Find the function (.)

I Understand its type

I From its type we can infer its function

Where to �nd help

I Type :t to �nd the type of a function

I Type :i to �nd basic information

I Type :browse <module> to �nd list of functions in the module

I Type :doc

A problem to think about

A game: given a word like "food", see whether you convert it into
another word, like "soul", using �ve transition words, where each
word di�ers from the immediately previous one by exactly one word.
For example, changing "Foot" into "Ball"

1. Foot

2. Food

3. Fold

4. Bold

5. Bald

6. Ball

Write a Haskell program, that, given two words each having length
4, outputs a sequence of �ve transition words if a sequence exists,
and otherwise outputs the empty list.

