Reflection and metaprogramming in Ruby

Satyadev Nandakumar

November 7, 2022

Satyadev Nandakumar

=
Reflection and metaprogramming in Ruby




Outline

Satyadev Nandakumar

Reflection

d metaprogramming in Ruby

[m]

=



Contents

@ Reflection: programs can examine their own structure and modify it
» enables metaprogramming
@ Metaprogramming: writing programs that write programs

» extends the syntax of Ruby
» used in writing framework
» Example: unit testing framework

@ Domain-specific languages

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 3/13



1. Reflection: types, classes and modules

Asking the type of an object

@ o.class

@ o.superclass

@ o.instance_of? ¢
whether o.class == ¢ (excludes superclasses)

@ 0.is_a? corc === ooro.kind_of? ¢
whether o is an instance of ¢, or any subclass of c. (for example,
car.is_a? Vehicle will be true) )

Hierarchy

o C.ancestors if Cis a class:

@ C < M: does C include M? or is C a subclass of M?

@ C.included_modules

chain of superclasses and included modules

returns true if so, nil otherwise

V.

= = = = =

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 4/13



1. Reflection: modifying classes and instances

defining classes

D = Class.new { include Comparable; }

evaluating arbitrary code : e.g. adding methods
@ instance_eval and class_eval

can take code strings or blocks as arguments
String.class eval {def len
size

end } #instance method
String.instance eval {def null

end } #class method

@ instance_exec and class_exec
can take blocks with arguments

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 5/13



2. Reflection: variables

Querying

class Point
def initialize x, y
Ox,0y = x, y

end
def setx x
Ox=x
end
end

Point.class variables
p = Point.new 1,1
p.instance variables # gives [:0x,

Satyadev Nandakumar Reflection and metaprogramming in Rub:

November 7, 2022

6/13



2. Reflection: variables

Modifying

p.instance variable set(:0x,0)
p.instance variable get # gives (0,1)

Note: can modify (private) variables!

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 7/13



3. Reflection: methods : listing, defining

query methods of instances

p.public_"methods, p.protected_methods, p.private_methods,
p.singleton_methods etc.

of classes

String.instance_methods, String.public_instance_methods,
String.protected_instance_methods,

defining methods

We can define methods using class_eval and instance_eval. We can
give alternative names using alias (important later)

Point.class eval { def norm
Math.sqrt O@xx0x+Qyx*Qy
end
alias magnitude norm

Satyadev Nandakumar November 7, 2022 8/13




3. Reflection: methods : invoking

@ We can call methods by sending messages

invoking methods J

p.send :norm p.send :setx, 3

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 9/13



method_missing

@ The killer feature that allows powerful metaprogramming techniques

@ if a method is missing from the instance/class, method_missing is
called.

@ method_missing is in the module Kernel
o classes in Ruby are open

@ Hence we can redefine method_missing for any class!
» perhaps add the required method at runtime!

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 10/13



Application 1: add accessor methods at runtime!

See example ./ruby_code/runtime_accessor.rb

Satyadev Nandakumar Reflection and metaprogramming in Rub: November 7, 2022 11/13


./ruby_code/runtime_accessor.rb

Application 2: unit testing

See notes

o = = E A
Satyadev Nandakumar Reflection and metaprogramming in Ruby



introduction to domain-specific languages

o = = E A
Satyadev Nandakumar Reflection and metaprogramming in Ruby



