CS 350 2022 Homework 2

Satyadev Nandakumar

October 14, 2022

1 Instructions

Due date: October 25, 2022

2 Questions

1. Derive the list of free variables in the following λ term. Outline your derivation according to the rules given in the notes.

 $(\lambda x.y(xx))(\lambda y.x(yy))(\lambda z.y)$

- 2. Evaluate the following λ expressions using α and $\beta\beta$ reduction rules to obtain the normal form. Please stop the reduction when you first obtain the normal form.
 - (a) $(\lambda ab \cdot ba)ab$
 - (b) $(\lambda x \cdot xx)(\lambda a \cdot a)$.
 - (c) $(\lambda x \cdot xx)(\lambda x \cdot xx)$.
- 3. Construct a λ term that does not have a normal form *i.e.* construct a term which can always be β reduced further. Explain why this term has this property in one or two sentences.
- 4. Based on the Church representation of Boolean values given in the notes, define the λ term which computes the "or" of Boolean values *i.e.* a term which takes two arguments, and evaluates to the Boolean representation of True if either of them is True, and to False if both of them are False.
- 5. What is the set of fixed points of the λ term $(\lambda x \cdot x)$?

6. Consider an enriched λ calculus which has natural numbers available, has a normal if-then-else construct, and has the operators +, - and ==. Using the Y-combinator, define the following *recursive* function to sum the first *n* numbers.

sum = $\lambda n \cdot$ if n==0 then 0 else n+(sum n-1).