
CS350 Homework 2

Due Date: October 10, 2018

This homework is about implementing an interpreter for the declarative sequential model discussed in
Chapter 2 of the book.

You can assume that the source code of some Oz program is given in an easy-to-parse Abstract Syntax
Tree format.

For example,

local X in

X=10

end

is represented as

[var ident(x)

[bind ident(x) literal(10)]]

Similarly

tree(key:10 left:nil right:nil)

is represented as

[record literal(tree)

[[literal(key) literal(10)

literal(left) literal(nil)

literal(right) literal(nil)]]]

The full specification of the AST format is given along with each feature to be implemented.

1 Specification

A program in Oz is just a statement. Any statement in Oz is represented as a list (in Oz). In general, the
source code is given as an Abstract Syntax Tree (AST), which is represented as a nested list. You have to
implement an interpreter to take such an AST as input and output the sequence of execution states during
the execution of the statement.

You will have to implement the semantic stack (a stack of pairs of [semantic statement, Environment]),
and the single assignment store. You are allowed to use explicit state (Cells). Suggested data
structures are in section 3.

1



Code that you are provided with: Code to perform the unification algorithm (thanks to Siddharth
Agarwal, a former TA for the course.) You will need this in Questions 4 and 5.

The assignment is provided in stages. A complete implementation of all the stages carries 160 points.
At any stage, submit only working code. Code that does not run is ineligible for credit.

1.1 Submission Format

Submit a zip file containing your source code, and a README file containing a list of questions you have
answered.

2 Questions

1. A program is a statement. The AST representation of a statement is a list.
A statement can be a nop (similar to the skip statement in Oz), or a sequence of statements. The AST

of a skip statement is [nop]. The AST of a sequence of statements 〈s1〉〈s2〉 is a list of the form [s1 s2].
Implementing this part involves implementing the semantic stack - stack of pairs of [semantic statement,

Environment]
(At this stage, the only statement that you have to worry about is nop. So you’ll have to handle code of

the form [[nop] [nop] [nop]].)

(15 points)

2. Variable Creation.

local <X> in <s> end

in Oz syntax will be represented by the list [var ident(x) s].
Implementing this feature involves implementing the ”adjoining” operation on environment.
Newly Bound Occurrences: x is no longer free in this statement. (You will need a list of non-free variables

if you are implementing closures in 4b).
Note that statements may be nested, so by this stage, you must take care that your code handles lexical

scoping in statements such as this, correctly:

[var ident(x)

[var ident(y)

[var ident(x)

[nop]]]]

(15 points)

3. Variable-Variable Binding 〈X〉 = 〈Y 〉 is represented in the AST as : [bind ident(x) ident(y)].

(15 points)

4. Implement the Single Assignment Store: Set of store variables, together with their bindings. A
suggested data structure is the “Dictionary”, as explained in Section 3. Implementing this will involve use
of the unification algorithm. You can use the code provided.

The store variables are bound to values. The different kinds of values are: number, record and procedure.
a. Implement numerical values and record values.
A number is represented as follows - e.g. literal(100) (no floating point numbers)
A record is represented as a list of the following form:

2



[record literal(a)

[[literal(feature1) ident(x1)]

[literal(feature2) ident(x2)]

...

[literal(featuren) ident(xn)]]]

(The second half of this question, dealing with procedures, comes later, since other features can be
implemented without them.)

(15 points)

5a. Variable-Value binding to numbers and records: 〈X〉 = 〈v〉 where 〈v〉 is a number or a record value
is represented in AST as: [bind ident(x) v]

(15 points)

6. If-then-else

if <x> then <s>1 else <s>2 end

has AST: [conditional ident(x) s1 s2]

(15 points)

7. Pattern Matching.

case <x> of <p1> then <s>1 else <s>2 end

has AST:

[match ident(x) p1 s1 s2]

Newly Bound Occurrences of variables: Recall that the pattern 〈p1〉 is a record. All variables in the
record are now bound in the case statement.

(15 points)

4 b, 5 b. Implement procedure values and assignment of variables to procedure values. A full implemen-
tation of this involves closures. You may choose to implement only those procedures with bound variables,
for 15 points.

The syntax of a procedure value is

[proc [ident(x1) ... ident(xn)] s]

where x1, ..., xn are values and s is a statement. The procedure name is not a part of the
definition.

Newly Bound Occurrences: x1,...,xn are bound in the procedure.
Free variables in the procedure: Variables which are not bound occur free. (If you implement closures,

you will have to restrict the environment and store the free variable bindings as part of the procedure value.)
Procedure Definition: Variable-Value binding to procedures.
Now, extend the semantics of assignment 〈X〉 = 〈v〉 to handle procedure values.

3



(30 points)

8. Procedure Application.

{F X1 ... Xn}

AST:

[apply ident(f) ident(x1) ... ident(xn)]

This involves mapping of actual parameters to formal parameters, as explained in the operational se-
mantics.

(15 points)

9. Library Routines
Arithmetic expressions are not part of the syntax. However, you are encouraged to code up the following

procedures in the given syntax.

local Sum Product in

Sum = proc {$ X Y ?Z}

Z=X+Y

end

Product = proc {$ X Y ?Z}

Z=X*Y

end

end

Make necessary changes to the operational semantics to implement these functions.

(10 points)

3 What you can use

To make the programming a little bit easier, you can use explicit state (CELLS).
The store can be implemented with a Dictionary. The dictionary is a standard module provided by

Mozart, which is a collection of key#value tuples. You could look at Page 160 of the text to see how the
Dictionary works - alternately, you could read the description here.

Mozart Version 1.4 Dictionary documentation
A code snippet that employs this module can be found here: Dict.oz. Note that the usage is different

from the documentation.
In Question 4, you can use the unification code provided at Unify.oz.

4 Programming Tools

The following provides a minimal overview of the tools helpful in development. In each case, consult the
Mozart Documentation for further reference.

4

http://mozart.github.io/mozart-v1/doc-1.4.0/mozart-stdlib/adt/dictionary.html
http://www.cse.iitk.ac.in/users/satyadev/fall14/code/Dict.oz
http://www.cse.iitk.ac.in/~satyadev/fall14/code/Unify.oz


4.1 \include directive

You may want to split the interpreter into multiple files. Oz provides a way to connect them together using
the \include directive.

For example, in the file “Interpreter.oz”, you add the statement \include ’Unify.oz’. Then the
compiler will make all the code inside the file “Unify.oz” available in the file “Interpreter.oz”.

4.2 Standalone compiler

You can compile your code outside the Interactive Environment, using the ’ozc’ compiler.

ozc -c File.oz

compiles the code

ozc -x File.oz

compiles the code, and links it statically to form an executable.

4.3 Oz debugger

The oz debugger is called ’ozcar’. We recommend that you launch from the interactive environment. In the
Oz interface, first select [Oz] from the menu bar, and then select [Start Debugger].

Edit the code in the interface. As usual, compile and launch the executable by clicking “Ctrl+Alt+X”
at the end of the code. Alternatively, select the code that you want to execute using the mouse, and then
select [Oz]→[Feed Region]. This should put you into debugging mode (the line executing is highlighted.)

Stepping Through Execution: To step into a line of code, use ’s’. To step over, press ’n’. To continue
till the next breakpoint, or to the end if there are no breakpoints, press ’c’.

Interface: We can ignore most of the features when developing sequential programs.
There are 4 windows. The “Thread Forest” window shows the threads that are executing. We have

only the main thread. The “Stack of Thread” shows the call stack of the current executing code. “Local
variables” shows the local variables in the topmost stack by default. “Global Variables” should be obvious.

Breakpoints: The environment provides two kinds of breakpoints.
1. To set breakpoints during execution of a program, in the editor window, go to the line where you

want to set a breakpoint. Then press “Ctrl+X Space” to set a breakpoint. “Ctrl+U Ctrl+X Space” deletes
a breakpoint at the current line.

2. You may instead, want to set the breakpoints before launching the debugger. To set a static breakpoint
on a line, edit the code to have a statement {Ozcar.breakpoint} on the same line.

For example,

1. local X in

2. X=[1 2 3]

3. {Ozcar.breakpoint} {Browse {Append X [1]}}

4. end

will set a breakpoint at line 3.
Whether you have set a static or a dynamic breakpoint, start the debugger, and press ’c’ twice in the

debugger window to hit the next breakpoint.

5


	Specification
	Submission Format

	Questions
	What you can use
	Programming Tools
	"026E30F include directive
	Standalone compiler
	Oz debugger


