
Ziv-Lempel 78 : A Universal Compressor

September 8, 2017

1 Compressibility Ratio

ρE(x[1 . . . n]) =
L(y[1 . . . n])

n log |A|
. (1)

ρE(s)(x[1 . . . n]) = min
E∈E(s)

ρE(x[1 . . . n]). (2)

ρE(s)(x) = lim sup
n→∞

ρE(s)(x[1 . . . n]). (3)

ρE(x) = lim
s→∞

ρE(s)(x). (4)

Why does the limit above exist?
It is clear that for every individual sequence, 0 ≤ ρ(x) ≤ 1. Why?
ρ(x) is called the finite-state compressibility of x.
Since ZL78 is a combinatorial, deterministic compression scheme, we resort to a combinatorial

argument of its optimality. We have to argue that the compression ratio of ZL78 is at most
a combinatorial quantity, and the compression ratio of any finite-state compressor with a fixed
number of states is at least that combinatorial quantity.

The combinatorial concept that underlies this quantity is defined by c(x[1 . . . n]), the maximum
number of distinct phrases that x[1 . . . n] can be parsed into.

Homework

1. Consider the problem 〈x[1 . . . n], k〉 of whether x[1 . . . n] can be parsed into k unique phrases.
Show that this problem is NP-complete.

2 Coding Theorem

Theorem 1. ∀n > 0 ∃ an information lossless finite-state encoder E with s(n) states with the
following properties.

1. For any block length n and every input block x[1 . . . n], we have

ρE(x[1 . . . n]) ≤ c(x[1 . . . n]

nlog|A|
log(2|A|(c(x[1 . . . n]) + 1)). (5)

1

2. For every finite s,

ρE(x[1 . . . n]) ≤ ρE(s)(x[1 . . . n]) + δs(n), (6)

where

lim
n→∞

δs(n) = 0. (7)

3. Given an infinite sequence x, let ρE(x, n) denote the compression ratio attained by E when
compressing x in successive blocks of length n. Then for any ε > 0,

ρE(x, n) ≤ ρ(x) + δε(x, n). (8)

where

lim
n→∞

δε(x, n) = ε. (9)

We show that the Ziv-Lempel78 algorithm is such an encoder E .

Proof. Suppose the incremental parsing of the input by the Ziv-Lempel78 Algorithm into unique
phrases is

x[1 . . . n] = x[n0 + 1 . . . n1]x[n1 + 1 . . . n2] . . . x[np + 1 . . . np+1] (10)

where each x[nj−1 + 1 . . . nj] is a unique phrase. Morever, by the property of the algorithm, we
know that for each such jth phrase, there is a unique ith phrase, i < j, such that x[ni−1 +1 . . . ni] =
x[nj−1 + 1 . . . nj − 1], i.e., the longest proper prefix of the jth phrase is equal to the ith phrase. We
will say that π(j) = i, i.e., the “predecessor” of j is i.

Moreover, n1 = 1.
Let us adopt the convention that x[n−1 + 1 . . . n0] = λ is the first phrase the parsing of any

string, and the notation that d(w) for any non-empty string w is the longest proper prefix of w.
At a particular stage of the algorithm, suppose the jth phrase has been identified. Let π(j) be

its predecessor. The encoding of the jth phrase is the integer

I(x[nj−1 + 1 . . . nj]) = π(j)|A|+ IA(x[nj]), (11)

where IA : A → {0 . . . |A| − 1} is the natural mapping from letters in A to the natural numbers.
Since 0 ≤ π(j) ≤ j − 1, it follows that

0 ≤ I(x[nj−1 + 1 . . . nj]) = π(j)|A|+ IA(x[nj])

≤ (j − 1)|A| + (|A| − 1) = j|A| − 1. (12)

Hence the number of bits required to encode the jth phrase is Lj = dlog j|A|e.

2

The total length of the encoding of x[1 . . . n] is

L =

p+1∑
j=1

Lj

=

p+1∑
j=1

dlog j|A|e

≤
p+1∑
j=1

log j|A|+ 1

=

p+1∑
j=1

log(2j|A|)

≤ (p+ 1)(log(p+ 1) + log(2|A|)).

Now, p ≤ c(x[1 . . . n]). It follows that

ρE(x[1 . . . n]) ≤ (c(x[1 . . . n]) + 1) log[2|A|(c(x[1 . . . n]) + 1)]

n log |A|
. (13)

This proves (i).
We shall prove that

ρE(s)(x[1 . . . n]) ≥ (c(x[1 . . . n]) + s2) log[c(x[1 . . . n]) + s2]

n log |A|
+

2s2

n log |A|
. (14)

From the above two inequalities, we conclude that

ρE(x[1 . . . n]) ≤ ρE(s)(x[1 . . . n]) + δs(n), (15)

where limn→∞ δs(n) = 0. This proves (ii).

3 Converse-to-Coding Theorem

Here, we derive a lower bound for the compression ratio of any ILFSC and any string x.

Theorem 2. For any x ∈ An, we have

ρE(s)(x) ≥ c(x) + s2

n logα
log

c(x) + s2

4s2
+

2s2

n logα
.

Proof. Let
x = x[1 . . . n1]x[n1 + 1 . . . n2] . . . x[nc − 1 . . . nc]

be a parsing of x into the maximum number of unique phrases possible, i.e. c(x) phrases.
Suppose we denote the corresponding output phrases by y[nj−1 + 1 . . . nj], for 1 ≤ j ≤ c. The

output phrases need not be unique, since uniqueness is assured only given the triple

(start state, output phrase, final state).

3

We group together the input phrases depending on the length of its output phrase. Let cj be
the number of distinct input phrases which have exactly j-long output phrases. We know cj ≤ s22j ,
since the output alphabet is binary, and there are s2 possible pairs of states to form the triples.

To obtain a lower bound on the output length, L(y[1 . . . n]). To overestimate L(y), it is sufficient
to overestimate cj , j = 0, 1, 2, . . . at the expense of

∑
i>j ci, provided the sum of all cj remains c.

Now,

q =
k∑
j=0

2j + ∆k.

We can assume that
cj = 222j for 0 ≤ j ≤ k,

and
ck+1 = s2∆k + r.

Hence

c = s2

 k∑
j=0

2j + ∆k

 = s2(2k+1 + t), (16)

where
t = ∆k − 1 +

r

s2
.

Now,

L(y) ≥ s2
k∑
j=0

j2j + (k + 1)(s2∆k + r)

= s2[(k − 1)2k+1 + 2] + (k + 1)(s2∆k + r)

= s2(k − 1)(2k+1 + t) + s2(k + 3 + 2t)

= (k − 1)(c+ s2) + 2s2(t+ 2).

From (16), we have

(k − 1) = log
c− s2t
s2

− 2 = log
c+ s2

4s2
− log

[
1 +

(t+ 1)s2

c− s2t

]
.

Now, substituting this back into the estimate of L(y), we get

L(y) ≥ (c+ s2)

(
log

c+ s2

4s2
+ τ

)
(17)

where

τ =
2s2

c+ s2
+ 2

φ

1 + φ
− log(1 + φ), (18)

with

φ =
(

∆k +
r

s2

) 1

2k+1
. (19)

This establishses that

L(y) ≥ (c+ s2) log
c+ s2

4s2
+ 2s2.

4

