Ziv-Lempel 78 : A Universal Compressor

September 8, 2017

1 Compressibility Ratio

p(alt..nl) = X0 hl) 1)
prs)(@[L...n]) = Ereng(ls) pe(z[l...n]). (2)
PE@s)(T) = liﬂsippE(s)(x[l---n])- (3)
pe(r) = lim pp)(@). (4)

Why does the limit above exist?

It is clear that for every individual sequence, 0 < p(z) < 1. Why?

p(x) is called the finite-state compressibility of .

Since ZL78 is a combinatorial, deterministic compression scheme, we resort to a combinatorial
argument, of its optimality. We have to argue that the compression ratio of ZL78 is at most
a combinatorial quantity, and the compression ratio of any finite-state compressor with a fixed
number of states is at least that combinatorial quantity.

The combinatorial concept that underlies this quantity is defined by c¢(z[1...n]), the maximum
number of distinct phrases that z[1...n] can be parsed into.

Homework

1. Consider the problem (z[1...n|, k) of whether x[1...n] can be parsed into k£ unique phrases.
Show that this problem is NP-complete.

2 Coding Theorem

Theorem 1. Vn > 0 3 an information lossless finite-state encoder £ with s(n) states with the
following properties.

1. For any block length n and every input block x[1...n|, we have

c(z[l...n]

pe(z[l...n]) < nlogl Al

log(2|Al(e(z]1...n]) + 1)). (5)

1

2. For every finite s,

pe(z[l...n]) < pps)(z[l...n]) + d5(n), (6)
where
lim 5(n) =0. (7)

3. Given an infinite sequence x, let pp(x,n) denote the compression ratio attained by £ when
compressing T in successive blocks of length n. Then for any € > 0,

pe(z,n) < p(x) + de(z,n). (8)
where
nh_)rrolo de(x,n) = €. 9)

We show that the Ziv-Lempel78 algorithm is such an encoder £.

Proof. Suppose the incremental parsing of the input by the Ziv-Lempel78 Algorithm into unique
phrases is

z[l...n]=zno+1...nizni +1...n9]...x[np+1...npp1] (10)

where each z[nj_; + 1...n;] is a unique phrase. Morever, by the property of the algorithm, we
know that for each such j*" phrase, there is a unique i*! phrase, i < j, such that z[n;_1 +1...n;] =
xz[nj_1+1...n; —1], i.e., the longest proper prefix of the 4 phrase is equal to the " phrase. We
will say that 7(j) = i, i.e., the “predecessor” of j is i.

Moreover, ny = 1.

Let us adopt the convention that xz[n_; + 1...n9] = A is the first phrase the parsing of any
string, and the notation that d(w) for any non-empty string w is the longest proper prefix of w.

At a particular stage of the algorithm, suppose the j® phrase has been identified. Let m(j) be
its predecessor. The encoding of the j* phrase is the integer

I(zng—1 +1...n4]) = 7(j)| Al + La(z[ng]), (11)

where I4 : A — {0...|A| — 1} is the natural mapping from letters in A to the natural numbers.
Since 0 < 7(j) < j — 1, it follows that

0<I(znj—1+1...n5]) = w())|A] + La(z[n;])
< G-DAL+ (A=) = g1 (1)

Hence the number of bits required to encode the 7' phrase is L; = [log j|A|].

The total length of the encoding of z[1...n] is
p+1
L=)1I;
j=1
p+1

— >~ Tlog Al

p+1
<) logjlAl+1

j=1

p+1
= _log(24]4])

j=1
< (p+ 1)(log(p + 1) + log(2|Al)).

Now, p < ¢(z[1...n]). It follows that

(c(z[1...n])+ 1) log[2|A|(c(z[1...n]) + 1)]

pe(z[l...n]) <

nlog|A]
This proves (i).
We shall prove that
(c(z[1...n]) + s?) logle(z[1...n]) + s%] 252
1... > .
pu(all...nl) 2 nlog |A| * nlog |A|

From the above two inequalities, we conclude that

pe(all...nl) < ppg(all...n]) +8(n),

where lim;,_, o, d5(n) = 0. This proves (ii).

3 Converse-to-Coding Theorem

Here, we derive a lower bound for the compression ratio of any ILFSC and any string x.

Theorem 2. For any x € A", we have

c(x) + s o c(z) + 82 252

> .
PE) (@) 2 nlog o 452 nlog o

Proof. Let
r=z[l...n1]z[ni+1...n9]...2[nc—1...n(

be a parsing of z into the maximum number of unique phrases possible, i.e. ¢(x) phrases.

(13)

(14)

Suppose we denote the corresponding output phrases by y[n;—1 +1...n;], for 1 < j <c. The

output phrases need not be unique, since uniqueness is assured only given the triple

(start state, output phrase, final state).

We group together the input phrases depending on the length of its output phrase. Let c; be
the number of distinct input phrases which have exactly j-long output phrases. We know ¢; < 5227,
since the output alphabet is binary, and there are s possible pairs of states to form the triples.

To obtain a lower bound on the output length, L(y[1...n]). To overestimate L(y), it is sufficient

to overestimate ¢j, j =0, 1, 2, ... at the expense of)
Now,

1>7

k
q= Z2j + Ay
=0

We can assume that .
cj =222 for 0 < j <k,

and
Cht1 = 2N + 7.
Hence
k .
c=s ZQJ—}—Ak = S2(2F o),
j=0
where r
S
Now,

k
Liy) =8> 2 + (k+1)(s*Ak +7)
=0

=2 [(k— 12"+ 2] + (k+1)(s’Ap +7)
s2(k —1)(28 +t) 4+ s%(k + 3 + 2t)

= (k—1)(c+ s%) +25%(t +2).

From (16), we have

c— st 2

c+s
(k—].) = 10g 52 -2 = log 452 —log |:1+C—S2t

Now, substituting this back into the estimate of L(y), we get

L(y) > (c+) <10g0+82 +T>

452
where
252 10}

C+82+21—|—¢_10g<1+¢)’

T g
with
_ (A r 1
= (’“+?2> ok+1"
This establishses that

c+s? 9

152 + 25,

L(y) > (c+ s*) log

(t + 1)31 ‘

¢;, provided the sum of all ¢; remains c.

