
Lempel-Ziv 77 Algorithm

1 The Source Model

In the first main result, the authors establish that for infinite sequences emitted by sources of a
particular kind, LZ77 attains optimal compression ratio.

The source in this particular case is not a probabilistic source, but one defined combinatorially.
This is what makes the following result interesting, even though it is partial. (A full result will
show that for every infinite sequence, LZ77 is optimal. This result was later established by Shields,
and we will cover this later in the course. The proof of LZ77 is interesting in its own right, even if
partial.)

Let A be the finite alphabet. Given a string S ∈ A∗, let S{m} denote the set of all m-length
substrings of S, and S(m) denote the cardinality of this set.

If σ is a set of strings, let σ{m} be the set of m-length strings in σ, and σ(m) be the number
of such strings.

Definition 1. A set σ ⊆ A∗ is called a source if the following hold.

1. A ⊂ σ - i.e. all the digits of A are in σ.

2. If a string S is in σ, then so is SS.

3. If a string S is in σ, then S{m} ⊆ σ{m}.

Note that rules 1 and 2 force every source to be infinite. Examples of sources include the
following

1. A∗ - this is the largest possible source.

2. If A = {0, 1}, then 0∗ ∪ 1∗ - i.e. the set of all single digit strings from A form a source. This
is the smallest possible source.

2 Analysis: Lower Bound on the Compression Length

2.1 Block-to-Variable Coding

Consideer any information-lossless finite-state compressor which parses the input into fixed-length
blocks of length L and produces output blocks. Since the output blocks are uniquely decipherable,
we have

{X1, X2, . . . , XM} = σ{L},

i.e. the L-length strings in σ correspond to the precise set of input blocks. Then, we have

M = σ(L).
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Since

h(L) =
1

L
logα σ(L)1,

i.e.,
σ(L) = αLh(L),

we have that
max

1≤i≤M
{`(Yi)} ≥ logαM = Lh(L).

Lemma 2.
ρBV (σ,M) ≥ h(L).

Proof. The compression ratio ρi associated with the ith word is given by

ρi =
`(Yi)

L
.

The block-to-variable compression ration ρ(σ,M) of the source σ is defined as

ρ(σ,M) = min
C(σ,M)

max
1≤i≤M

ρi.

We know that

min
C(σ,M)

max
1≤i≤M

ρi ≥
logM

L
=
Lh(L)

L
= h(L).

Hence we have the result.

2.2 Variable-to-Block Coding

Suppose now that `(Yi) = L for all 1 ≤ i ≤M . In this case, the compression ratio is given by

ρi =
L

`(Xi)
.

Then we have the following.

Lemma 3.
ρV B(σ,M) ≥ h(LM ),

where
LM = max{` |M ≥ σ(`)}.

Note that the above quantity LM is not defined for all M . For example, if σ(i) = 2 for all i,
then LM is ∞ for all M ≥ 2.

Proof. Assume without loss of generality that

`(Xi) ≤ `(Xi+1), 1 ≤ i ≤M − 1.

Hence, for each C ∈ CV B(σ,M), we have

max ρi(C) =
L(C)

`(X1)
.

1The base of the logarithm is α, the size of the alphabet A.
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§a. (Upper bound on `(X1)) If every string has the same length as X1, then `(X1) = M .
Otherwise, if there is a longer string, then `(X1) < M . Thus

M ≥ σ(`(X1)).

Fom the definition of LM , it follows that `(X1) ≤ LM . Thus

max
1≤i≤M

ρi(C) =
L(C)

`(X1)
≥ L(C)

LM
.

§b. (Lower Bound on L(C)) Since every code represents at most one Xi, we have |C| ≥M , or
equivalently, L(C) ≥ logα(M). Hence,

max
1≤i≤M

ρi(C) ≥ logα(M)

LM
.

Since M ≥ σ(LM ) = αLMh(LM ), we have

max
1≤i≤M

ρi(C) ≥ h(LM ).

3 Upper Bound on the Performance of LZ77

We will choose a buffer length carefully, to make the calculation simpler later.
Let

n =
λ∑

m=1

mαm +

Ls−1∑
m=λ+1

mσ(`) + Ls(NLs + 1), (1)

where λ = b(Ls − 1)h(Ls − 1)c = blog σ(Ls − 1)c, and

NLs =

λ∑
m=1

(Ls −m− 1)αm. (2)

We will justify the need for this exact form of n later. For the moment, note that it is a constant
that depends on Ls, σ and h(Ls), but not on any individual string. (In particular, n depends on
the source and its h parameters in addition to Ls.)

Let Q ∈ σ{n−Ls} be a string whose parsing has the maximum number of phrases, and let the
parsing be

Q = Q1Q2 . . . QN .

Unlike LZ78, we cannot claim that every phrase Qj has a unique predecessor Qi which is the longest
proper prefix of Qj . This is the claim that helped us derive the upper bound in LZ78. This property
cannot hold here, hence the upper bound derivation is more complex. We proceed as follows.

First, we derive an upper bound for N , and then, we derive a lower bound for n− Ls.
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3.1 Upper Bound for N

We can make the following observation about the phrases. If `(Qi) = `(Qj), then Qi 6= Qj - i.e.,
the phrases are unique.

Let Km be the number of phrases in the parsing of Q of length m. Then we have

N = 1 +

Ls∑
m=1

Km,

since the longest a phrase can be is Ls
2.

We have Km ≤ σ(m) for all 1 ≤ m ≤ Ls − 1.
Since

n− Ls = `(Q) = `(QN ) +

Ls∑
k=1

mKm,

we can provide an upper bound for N by overestimating K1, K2, . . . , and KLs−1 at the expense
of KLs . (i.e. Since the total length of the phrases is constant - the length of Q - we can maximize
the number of phrases by assuming that there are more number of shorter phrases.)

Since σ(m) ≤ σ(m+ 1) for any source, and σ(m) = αmh(m) ≤ αm, we obtain

N ≤ K ′Ls
+

Ls−1∑
m−1

K ′m = N ′

where, for all 1 ≤ m ≤ Ls − 1,

K ′m =

{
αm if 1 ≤ m ≤ b(Ls − 1)h(Ls − 1)c
σ(Ls − 1) if b(Ls − 1)h(Ls − 1)c ≤ m ≤ Ls − 1.

and

K ′Ls
=

⌈
1

Ls

(
n− Ls −

Ls−1∑
m=1

mK ′m

)⌉
.

This is obtained by trying to saturate the lower indices as much as possible, and assigning the
remainder to K ′Ls

. Note that b(Ls − 1)h(Ls − 1)c is blog σ(Ls − 1)c, the upper threshold of those
m which can be filled to the maximum.

Since we have appropriately chosen n, substituting the value of n from (1) into the expression
above, e get KLs = Ns, and

N ′ = N`+1 +

λ∑
m=1

αm +

Ls−1∑
m=λ+1

σ(Ls − 1).

Now, substituting it back in (1) and (??) gives

n− Ls − (Ls − 1)N ′ =

λ∑
m=1

mαm +

Ls−1∑
m=λ+1

mσ(`)+

NLs − (Ls − 1)

[
λ∑

m=1

αm +

Ls−1∑
m=λ+1

σ(Ls − 1)

]
= 0.

2Why the +1?
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Hence,

N ≤ N ′ = n− Ls
Ls − 1

.

4 Lower Bound for n− Ls

We now prove the following theorem, during whose proof we derive a lower bound for n− Ls.

Theorem 4. If the buffer length n for a source with known h-parameters is chosen according to
(1), then we have

ρ ≤ h(Ls − 1) + ε(Ls),

where

ε(Ls) =
1

Ls − 1

(
3 + 3 log(Ls − 1) + log

Ls
2

)
.
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