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1 Main Theorem

Theorem 1. For any order function σ : N → N and any real 0 < ε < 1/4, there is a stationary
ergodic measure P computable with respect to σ with entropy 0 < H ≤ ε such that for each universal
code {φn}n∈N, there is a sequence x ∈ A∞ such that

1. dP (x[1 . . . n]) ≤ σ(n) - i.e. when σ is a slow-growing order function, x can be made fairly
close to incompressible.

2. We have

lim sup
n→∞

ρφn
(x[1 . . . n]) ≥

1

4
(1)

lim inf
n→∞

ρφn
(x[1 . . . n]) ≤ ε (2)

The import of the theorem is as follows. We know that the Lempel-Ziv class of compressors is
optimal with respect to stationary ergodic sources in the following sense :

P{x ∈ A∞ | ρ(x) = H} = 1. (3)

This statement says that for some set of infinite sequences which has probability 1, the Lempel-
Ziv compressibility ratio attains the entropy rate of the stationary ergodic source.

We can refine the above statement by specifying one well-known probability one set for which the
statement holds. This is the set of Martin-Löf random, or Kolmogorov incompressible sequences.
We now introduce this class.

1.1 Kolmogorov incompressible sequences

We know that a Turing Machine can be specified using a 7-tuple consisting Input alphabet, Output
alphabet, Blank Symbol, Transition Function, Start state, Accept state and Reject state. Since
each of these can be encoded using a binary string, we can encode Turing machines using strings
in A∗. Using such an encoding, we can rigorously talk about the size of a Turing Machine.

This allows us to say that a string is simple if there is a small Turing machine which outputs it,
and incompressible when the smallest Turing machine outputting it is at least as long as the string
itself.
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In the study of randomness or incompressibility of infinite sequences, we need to extend the
notion of computation to deal with infinite sequences. The definition of a Turing machine remains
the same, but the notion of computation over infinite sequences is slightly different.

Definition 2. We say that a computable function f : A∗ → A∗ is monotone if given strings x and
x′, if x is a prefix of x′, then f(x) a prefix of f(x′).

We say that a string y ≤ z if y is a prefix of z. With the introduction of a ≤ ordering, we can
now use the notion of a supremum.

Definition 3. For an infinite sequence α ∈ A∞, the result of the computation of a computable
monotone function f : A∗ → A∗ is defined by

f(α) = sup{y | x is a finite prefix of α, and f(x) = y}. (4)

We can imagine computable monotone functions being computed by Turing machines working
on an infinite input, and outputting on a write-only tape. It can read an arbitrary finite number of
input symbols before outputting another bit. However, once a bit has been output, the machine can
never erase it. In that sense, it is a monotone computation - the output never shortens over time.
(The output corresponding to an infinite input need not be itself infinite. However, the definition
allows infinite outputs.)

Definition 4. The size of a monotone computable function f : A∗ → A∗ is the length of the
encoding of the smallest Turing machine which computes f .

Definition 5. The monotone complexity of a finite string x ∈ A∗, denoted Km(x), is the size of
the smallest monotone computable function f : A∗ → Ar∗ such that f(λ) = x.

Fix c ∈ N.

We say that x is monotone incompressible if Km(x) ≥ n − c. We say that x is monotone
incompressible with respect to a probability measure P if Km(x) ≥ − logP (x)− c.

We can extend the notion of an incompressible finite string to that of infinite sequences in
the natural way. We say that an infinite sequence is incompressible if all its finite prefixes are
incompressible.

Definition 6. An infinite sequence α ∈ Aω is monotone incompressible with respect to a probabil-
ity measure P if there is a constant c such that for all n, Km(α[1 . . . n]) ≥ − logP (α[1 . . . n])− c.

Observation. Since a Lempel-Ziv compressor can be implemented by a monotone Turing
machine, it follows that for all sufficiently large n,

Km(α[1 . . . n]) ≤ L(α[1 . . . n]),

where L(α[1 . . . n]) is the output of the Lempel-Ziv compression of the prefix of α. Hence if we pick
monotone incompressible sequences with respect to P , then they are Lempel-Ziv incompressible.

Fact. By a standard counting argument, we can show that most strings of any given length n
are incompressible. It is a well-known result in the theory of algorithmic randomness that the set
of incompressible sequences with respect to a computable probability P has P -probability 1. We
will assume this fact without proof.
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1.2 Motivation for the result

It is possible to show that for every P -incompressible sequence α, ρ(α) = H. This refines our earlier
statement that ρ = H with probability 1. We know that for a specific probability 1 set, namely
the set of all P -incompressible sequence, ρ = H for every element of this set.

Now, we show that if P -incompressibility is violated by a small amount, then we can construct
an α which is compressibly to that extent, where ρ(α) 6= H.

This is the manner in which Lempel-Ziv optimality is “non-robust” - a small violation in in-
compressibility is sufficient to alter the optimality of the compressor.1

2 An introduction to Cutting and Stacking

The sample space we work with is the set of infinite sequences from a finite alphabet A, denoted
A∞ (usually identified with the base-A expansion of numbers in (0, 1)). We study properties of a
probabilistic system (A∞,F , P ) under iterated applications of a measure-preserving (or ergodic)
transformation T : A∞ → A∞. A single application of T can be seen as motion of the system in
a single time-step. We are thus interested in the long-term evolution of a system under “motion”.
This is the origin of the term “symbolic dynamics” for this subject.

V’yugin’s construction uses a technique called “cutting and stacking”. This is a comparatively
involved method to construct stationary probability distributions with a set of desired properties.
With care, it is also possible to construct stationary ergodic probability distributions with desired
properties.

In the method of cutting and stacking, we are provided initially with A∞ and the σ-algebra
F . We have to construct a measure-preserving transformation T : A∞ → A∞ and an associated
probability measure P preserved by T , in addition to certain set of desired properties.

2.1 Gadgets

We start with some basic terminology. Consider the uniform probability measure µ on the unit
interval and a transformation T : (0, 1) → (0, 1). A partition Π = (π1, . . . , πk) is a sequence of
pairwise disjoint subsets of (0, 1) whose union is the interval.

Let A = {1, . . . , k}, an alphabet with the same cardinality as Π. A transformation T : (0, 1) →
(0, 1) determines a measure on A∗ and A∞ as follows.

P (a[1 . . . n]) = λ(ω | ω ∈ [0, 1), T i(ω) ∈ πa[i], 1 ≤ i ≤ n}, (5)

i.e. The probability of a finite string a[1 . . . n] is the uniform probability of the set of all ω ∈ [0, 1)
such that T 1(ω) ∈ πa[1], T 2(ω) ∈ πa[2], . . . , and T n(ω) ∈ πa[n]. For example, P (1211) is the
probability of the set of all ω ∈ [0, 1) such that T 1(ω) ∈ π1, T

2(ω) ∈ π2, and so on.

1Note that with o(n) changes, H of the new sequence is the same as before, since for a stationary measure this is
the finite-state block entropy of the original sequence. The point here is that the Lempel-Ziv compressibility changes.
Thus with o(n) changes, a finite-state incompressible sequence and Lempel-Ziv somewhat-compressible sequence is
converted into another finite-state incompressible sequence which is now very highly Lempel-Ziv compressible.
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Figure 1: Columns and Gadgets
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This roughly corresponds to the “base-k” encoding if Π consists of the natural ordering of
subintervals of the unit interval, each of length 1/k.

We now introduce the main notions and properties of the “cutting and stacking” method. A
column is a sequence E = (L1, . . . , Lh) of pairwise disjoint subintervals of equal width, with L1

being the base of the column and Lh the top, the width of the column w(E) is the length of L1,
Ê = ∪h

i=1Li the support of the column, and λ(Ê) the measure of E. The idea of a column is that
T (Li) = Li+1 for 1 ≤ i ≤ h − 1. The inverse image of L1 and the image of Lh under T are not
specified by the column. Any point ω ∈ Lj defines a finite trajectory

ω, Tω, T 2ω, . . . , T h−jω.

A partition Π is compatible with a column if for each i, there is a j such that Li ⊆ πj, i.e. each
Li is inside a unique partition, and does not overlap two partitions. The number i is called the
name of the interval Lj. The sequence of names of all intervals is the name of the column E. For
a point ω ∈ Ê, the E-name of the trajectory

ω, Tω, T 2ω, . . . , T h−jω

is the sequence of the names of the intervals Lj, . . . , Lh from the column E. The length of the
E-name of ω is h− j + 1.

A gadget Υ is a finite collection of disjoint columns. The width of the gadget w(Υ) is the sum
of the width of its columns. If Υ = ∪iΥi is a union of gadgets with disjoint supports, then its
support is the union of the supports of all its constitutent gadgets. A transformation T (Υ) on a
gadget Υ is the union of transformations defined on all its columns. The Υ-name of a trajectory
belonging to a column E is its E-name.

A gadget Υ extends a column F if the support of Υ extends the support of F , T (Υ) extends
T (F ) and the partition of Υ extends the partition of F .
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Figure 2: Cutting a gadget according to the ratio (34 ,
1
4 ).
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2.2 Cutting and Stacking

The distribution of a gadget Υ with columns E1, E2, . . . , En is a vector of probabilities

(

w(E1)

w(Υ)
,
w(E2)

w(Υ)
, . . . ,

w(En)

w(Υ)

)

.

A gadget Υ is a copy of a gadget Λ if they have the ame distribution and the corresponding
columns have the same names.

A gadget Υ can be cut into M copies Υ1, Υ2, . . . , ΥM according to a given probability vector
(γ1, . . . , γM ) by cutting each column Ei = (Li,j | 1 ≤ j ≤ h(Ei)) into disjoint subcolumns

Ei,m = (Li,j,m | 1 ≤ j ≤ h(Ei)), (6)

where w(Ei,m) = w(Li,j,m) = γmw(Li,j), for 1 ≤ m ≤ M . The piece Υm = {Ei,m | 1 ≤ i ≤ L} is
called the copy of the gadget Υ of width γm.

Another basic operation is stacking gadgets onto gadgets. We define this by first looking at the
elementary operation of stacking columns onto other columns of equal width.

§a. Columns onto Columns. Let E1 = (L1,j | 1 ≤ j ≤ h(E1)) and E2 = (L2,j | 1 ≤ j ≤
h(E2)) be two columns of equal width. The stacked column E1 ∗E2 is formed by first stacking the
columns of E1 in the same order, and placing the columns of E2 above them, in the same order as
in E2. Thus E1 ∗ E2 has height h(E1) + h(E2).

§b. Columns onto Gadgets. Now we stack columns onto gadgets of equal width. Let a gadget
Υ = (U1, . . . , Um) and a column E have the same width. Then cut E into m copies (E1, . . . , Em)
where w(Ei) = w(Ui). Now, E ∗Υ = (E1 ∗ U1, . . . , Em ∗ Um).

§c. Gadgets onto Gadgets. Let Υ and Λ be two gadgets of equal width, though not necessar-
ily having the same number of columns or columns of the same width. The gadget Υ ∗Λ is defined
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Figure 3: Stacking a gadget onto another
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as follows. Let the columns of Υ be (U1, . . . , Uk). Cut Λ into copies Λi such that w(Λi) = Ei for
all i. Then, for each i, stack Λi onto Ei. Then

Υ ∗ Λ = (U1 ∗ Λ1, U2 ∗ Λ2, . . . , Uk ∗ Λk). (7)

The number of columns in the resultant is the product of the number of columns in each gadget.

The M -fold cutting and stacking of the gadget Υ onto itself is defined in a natural way.

§d. Limit of the construction. A sequence of gadgets 〈Υn〉n∈N is complete if

1. limn→∞w(Υn) = 0.

2. limn→∞ λ(Υ̂m) = 1.

3. Υn+1 extends Υn for n ∈ N.

Any such complete gadget determines a transformation T = T 〈Υs〉 defined almost everywhere on
[0, 1).

§e. Ergodic Properties of the construction. The transformation is measure-preserving by
construction, if the sequence of gadgets is complete. Sufficient conditions for ergodicity are given
below.
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Let Υ be constructed from Λ by cutting and stacking. Let E be column from Υ and D from Λ.
Then Ê ∩ D̂ is defined as the union of subcolumns from D of width w(E) used in the construction
of E.

Let 0 < ǫ < 1. A gadget Λ is (1− ǫ) well-distributed in Υ if

∑

D∈Λ

∑

E∈Υ

|λ(Ê ∩ D̂)− λ(Ê)λ(D̂)| < ǫ. (8)

Note that if Ê is independent of D̂, then the above term will be 0. The expression therefore implies
that the subcolumns of D of width w(E) used in the construction of E are almost independent of
the columns in E.

The concept of well-distribution gives us a condition that we can ensure in each step of a
sequence of gadgets, in order to ensure that in the limit, the transformation we define is ergodic.
We have the following consequences if gadgets are well-distributed.

Lemma 7. Let 〈Υn〉n∈N be a complete sequence of gadgets, and, for each n, let Υn be well-
distributed in Υn+1. Then 〈Υn〉 defines an ergodic process.

Lemma 8. For any ǫ > 0 and any gadget Υ, tere is a number M such that for all m ≥ M , the
gadget is (1− ǫ)-well-distributed in the gadget Υ∗(M).

The above lemmas give an easy way to ensure that a process defined by cutting and stacking is
ergodic as well as stationary.

3 Nonrobustness of the property of the universal data compres-

sion scheme.

Consider the following analogue of the main theorem, which holds for Kolmogorov Complexity as
opposed to Lempel-Ziv compressibility.

Theorem 9. For any order function σ : N → N and any real 0 < ε < 1/4, there is a stationary
ergodic measure P computable with respect to σ with entropy 0 < H ≤ ε such that for each universal
code {φn}n∈N, there is a sequence x ∈ A∞ such that

1. dP (x[1 . . . n]) ≤ σ(n) - i.e. when σ is a slow-growing order function, x can be made fairly
close to incompressible.

2. We have

lim sup
n→∞

K(x[1 . . . n])

n
≥

1

4
(9)

lim inf
n→∞

K(x[1 . . . n])

n
≤ ε (10)

Proof. Let r > 0 be a sufficiently small rational number to be determined later. Consider the
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partition

π0 =

[

0,
1

2

)

∪

(

1

2
+ r, 1

]

π1 =

[

1

2
,
1

2
+ r

]

.

We use cutting and stacking to define an ergodic transformation T : [0, 1) → [0, 1) defining a
stationary ergodic measure P on the set A∞. The definition of P is given by

P (a[1 . . . n]) = λ{ω | ω ∈ [0, 1), T i(ω) ∈ πa[i], 1 ≤ i ≤ n}. (11)

Thus the definition of P on A∞ depends on the uniform measure on [0, 1) and the partition. The
measure P can be extended in a natural way to all Borel sets of A∞.

The ergodic transformation T will be defined by a sequence of gadgets 〈∆s〉s∈N and 〈Πs〉s∈N.
Let Φs = ∆s ∪Πs for s ∈ N.

The purpose of the construction is to ensure conditions such that there is an infinite trajectory
α satisfying the conditions in the theorem.

Since the function σ is non-decreasing and unbounded,a sequence of positive integers exists such
that

0 < h−2 < h−1 < h0 < h1 < . . .

with
σ(hi−1)− σ(hi−2) > − log r + i+ 13.

If σ is a slow-growing function, then the h sequence grows rapidly.

§1. Base Case of the Construction. ∆0 is obtained by cutting the interval [1/2− r, 1/2+ r)
into 2h0 equal parts and stacking them. Π0 is obtained by cutting [0, 1/2 − r) ∪ (1/2 − r, 1] into
2h0 equal parts and stacking them. Note that the measures of the gadgets are λ(∆0) = 2r and
λ(Π0) = 1− 2r.

§2. Inductive Stages of the Construction. At step s − 1, assume that the gadgets ∆s−1

and Πs−1 have been defined. Then, cut ∆ into two copies ∆′ and ∆′′ of equal width.

Cut the remaining half ∆′ into Rs equal copies, and stack them independently. Call the resulting
gadget ∆s. We choose Rs so that this gadget has a height of 2hs. The measure of ∆s is

λ(∆s) =
r

2s+1
.

Form the intermediate gadget Πs−1∪∆′′. Cut the intermediate gadget into Rs copies, and stack
them independently. The resulting gadget also has height 2hs. Call this resulting gadget as Πs.
The measure of Πs is

λ(Πs) = 1−
r

2s+1

§3. Properties of the Construction The consruction ensures the following.

1. The transformation T is defined on a set of probability 1.
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2. The measure P is stationary.

3. The measure P is ergodic since

(a) 〈Πs〉s∈N is complete.

(b) Πs−1 ∪∆′′ and hence Πs−1 are (1− 1
s ) well-distributed in Πs.

§4. Construction of α We define prefixes of α in each stage s, dentoted α(s), such that

α(0) ≺ α(1) ≺ . . . .

For all sufficiently large k, α(k) will be a compressible sequence for odd k and incompressible for
even k.

Define α(0) be the Π0-name of some trajectory of length ≥ h0 such that dP (α(0)) ≤ 2. Such a
trajectory exists since incompressible sequences are abundant.2

§§4.1 Inductive Construction of α(k) Assume that α(0) ≺ . . . α(k−1) have been constructed.
For some stel s(k− 1) in the construction, the word α(k− 1) is the Πs(k−1) name of a trajectory of
some point from the support of the gadget Πs(k−1), having length ≥ hs(k−1).

Further, if k is odd, then α(k − 1) must be incompressible, so we assume that dP (α(k − 1)) ≤
σ(hs(k−2))− 4. If k is even, the α(k − 1) must be compressible, then dP (α(k − 1)) ≤ σ(hs(k−2)).

3

If k is even, then we also assume that

P s(k−1)(α(k − 1)) >
1

8
P (α(k − 1)).4

§§4.2 Construction of α(k), k odd (compressible prefixes). Consider all intrervals of
Πs−1 such that for any trajectory starting in this interval with Πs−1-name extending α(k− 1), the
frequency of visiting partition π1 is ≤ 2r. Then by an estimate using binomial coefficients, we know
that for any such trajectory γ,

K(γ)

|γ|
≤ −3r log r ≤ ε

if r is sufficiently small. By the Ergodic Theorem, for all sufficiently large s, the total length of all
intervals in this set is greater than or equal to 1

2P (α(k − 1)). 5

Consider an arbitrary column from Πs. Divide the set of intervals into the lower and upper
halves. Consider only intervals in the lower part. Any trajectory starting here has length ≥ hs.
Fix some s as above and let s(k) = s.

Let Us(α(k − 1)) be the set of all intervals from the lower half such that trajectories γ starting
in them and having Πs names extending α(k − 1) satisfy

K(γ)

|γ|
≤ −3r log r ≤ ε.

2We will not go into quantitative estimates establishing this statement here, but will assume this.
3By construction, σ(hs(k−2)) is approximately − log r+ s(k− 2) + 13, hence very small compared to the length of

α(k − 1).
4This is satisfied, for instance when P (α(k − 1)) is very close to 1.
5Because ∆′′ is well-distributed in Πs−1?
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The inequaluty P s(Us(α(k − 1))) > 1
4P (α(k − 1)) holds. 6

Define
D = ∪γ∈Us(α(k−1)Cγ .

Then it is easy to prove that a set S ⊆ Us(α(k − 1)) exists7 such that P (S) > 1
8P (D) and

P s(b) > 1
8P (b) for all b ∈ S.

Then there is an element b ∈ S such that dP (b ↾ j) ≤ dP (a) + 4 if |α(k − 1)| ≤ j ≤ |b|. Define
α(k) = b.

By the induction hypothesis,

dP (α(k − 1)) ≤ σ(h(sk−2))− 4

holds, and |α(k − 1)| ≥ hs(k−1) > h(s(k − 2)). Hence,

dP (b ↾ j) ≤ σ(hs(k−2)) ≤ σ(|α(k − 1)|) ≤ σ(j)

holds for |α(k − 1)| ≤ j ≤ |b|.

§§4.3 Inductive Construction of α, even k (incompressible)

First, consider an arbitrary column from the gadget ∆s−1.

The uniform measure of the lower half is 1
2λ(∆s−1). Let L = 2hs−1 be the height of the gadget

∆s−1. Consider the names xL/2 of initial fragments of all trajectories starting in the lower half of
∆s−1. By the incompressibility of sequences, the Bernoulli probability of all strings of length L/2
satisfying

K(x
[

0 . . . L2 − 1
]

)

L/2
< 1−

2

hs−2

is at most
(

2
2

hs−2

)L/2

= 2−L/hs−2 .

Any other string in the same set satisfies

K(x
[

0 . . . L2 − 1
]

)

L/2
≥ 1−

2

hs−2
. (12)

We now argue that this set has sufficient probability.

For any step s of the construction, and any trajectory x, Ps−1(x) = 2−|x|λ(∆̂s−1). Hence this
set has probability at least 1

4λ(∆̂s−1).

Now we look at the proportionate probability of extensions of this trajectory in the next stage
s. We have,

γ =
λ(∆′′)

λ(Πs−1)
=

λ(∆)

2λ(Πs−1)
=

2−s+1r

1− 2−s+2
≥ 2σ(hs−1)−σ(hs−2)+12.

Consider the Rs-fold independent cutting and stacking of the intermediate gadget Πs−1 ∪∆′′.
When we stack, the portion of trajectories of any column from Πs−1 which go into the column ∆′′

is equal to

6Why?
7Why?
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λ(∆′′)

λ(Πs−1) + λ(∆̂′′)
=

γ

1 + γ
.

In stage s, consider the lower half of all subintervals in which trajectories with Πs−1-names
extend α(k − 1). The length of each such trajectory in stage s is at least hs.

1. The measure of all the remaining subintervals will reduce by a factor of 2. ( is this because
we are neglecting the upper half?)

2. Consider a subset of these subintervals such that the trajectories starting there go into columns
of ∆′′. This is γ

1+γ fraction of the subintervals which remain after step 1.

3. Consider a subset of these which generate trajectories which satisfy (12) What remains has
probability at least 1

4 of that in step 4.

Let D be the set of all Πs names of all trajectories that remain after these filtering operations.
Then

Ps(D) ≥
γ

8(1 + γ)
Ps−1(α(k − 1)).
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