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We focus on properties of lossless compression, which is typically used to compress text. In the
course of this discussion, we will use a finite input alphabet Σ, and a finite output alphabet Γ, which
may be different from the input alphabet. We start by looking at a few basic compression techniques
and analyse them before proceeding to a more formal treatment of sophisticated techniques. A few
preliminary notations and definitions are in order.

We use Σ∗ to denote the set of finite strings drawn from the alphabet, and Σ∞, to denote the
set of infinite sequences. For a finite string w, the notation |w| denotes the length of the string. If
A is a finite set, then |A| denotes the number of elements of A. For a non-negative integer n, the
set Σn consists of |Σ|n strings of length n. For most of this course, we will adopt Σ = Γ = {0, 1},
the binary alphabet.

We start with a very broad definition of what constitutes a lossless compressor - somewhat
counter-intuitively, we do not insist that the compressor’s output must be shorter than the input.
Immediately after the definition, we justify this.

Definition 1. A lossless compressor is a 1-1 function C : Σ∗ → Σ∗.

An immediate consequence of this definition is that any lossless compressor leaves most strings
uncompressed - i.e. for most strings w, we have |C(w)| ≥ |w|. The following counting argument
shows a weaker version of this statement.

Lemma 2. Let n and k be positive integers, where k < n, Σ = {0, 1} and C : Σ∗ → Σ∗ be a lossless
compressor. Then

|{x ∈ Σn | |C(x)| ≤ n− k}| ≤ 2n−k+1 − 1.

Thus an additive loss in the compression length incurs a multiplicative loss in the number of
strings which can be compressed.

Proof. The set of codewords of length at most n − k is Σ≤n−k ∩ C(Σ∗). This has at most 2n−k+1

strings. Since C is 1-1, this set has at most 2n−k+1 preimage strings. In particular, there are at
most 2n−k+1 strings of length n which have compressed forms with length ≤ n− k.

The above lemma shows immediately that there must be strings x such that |x| ≤ |C(x)|. We
have the following corollary.

Corollary 3. Let Σ = {0, 1}, and C : Σ∗ → Σ∗ be a lossless compressor. Then for all lengths
n ≥ 1, there are strings x ∈ Σn such that |x| ≤ |C(x)|.

Proof. Let n ≥ 1. Then

|{z ∈ Σn | |C(z)| ≤ n− 1}| ≤
∣∣Σ≤n−1∣∣ = 2n−1+1 − 1 = 2n − 1,

hence there is a string x ∈ Σn with |C(x)| ≥ n.
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Thus it is senseless to examine the “worst-case” performance of a data compressor. A lossless
data-compressor has infinitely many strings which it cannot compress at all, and may in fact,
expand an input to a greater length. What we study is the expected-codelength with respect to
various probability distributions on the input.

Even though the above lemma says that a significant fraction of strings cannot be compressed
much, lossless compressors may still be useful, as we describe now.

It is possible that a specific lossless compressor may compress a small but useful fraction of all
possible strings.

1. First, we may heuristically say that all “meaningful” strings, e.g. English text, C source code
etc. can be compressed by some specific compressor we have in hand.

2. Another way is to define a probability distribution, prove that “meaningful” strings have high
probability under this distribution, and then show that the expected codelength according to
this distribution is very small.

The first method is practically useful, but does not provide any quantitative bounds on the
performance of the compressor. In order to obtain such bounds, we usually resort to, at least at-
tempt, the second approach. Computing the expected code length is often tedious for sophisticated
compressors and arbitrary distributions. Nevertheless, we now illustrate this approach on a very
simple compression technique.
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