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Abstract9

Recently, Scheerer [20] and Vandehey [22] showed that normality for continued fraction expansions10

and base-b expansions are incomparable notions. This shows that at some level, randomness for11

continued fractions and binary expansion are different statistical concepts. In contrast, we show that12

the continued fraction expansion of a real is computably random if and only if its binary expansion13

is computably random.14

To quantify the degree to which a continued fraction fails to be effectively random, we define the15

effective Hausdorff dimension of individual continued fractions, explicitly constructing continued16

fractions with dimension 0 and 1.17
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1 Introduction24

Kolmogorov initiated the program of proving that all practical applications of randomness are25

consequences of incompressibility [10]. A landmark achievement in the theory of computation26

realizing Kolmogorov’s program is Martin-Löf’s definition of an individual random binary27

sequence using constructive measure [16]. Alternative, equivalent characterizations using28

martingales [21] and incompressible sequences [11], [6], [1], establish that the definition of an29

individual random binary sequence is mathematically robust. This has led to a deep and rich30

theory interacting fruitfully with computability theory, probability theory and dynamical31

systems (see for example, [12], [3], [19]).32

In this work, we study the concept of an individual random continued fraction. An33

important question is whether randomness of a real is preserved when translating from one34

representation to another, for example, from base 2 expansion to base 3 expansion, or from35

binary expansion to continued fraction expansion. Recent elegant constructions by Vandehey36

and Scheerer show that continued fraction normals and normals in base-b are incomparable37

sets [22], [20]. In contrast, Nandakumar [18] remarks that the binary expansion of a real38

is Martin-Löf random if and only if its continued fraction is. We extend this result using39

martingales, and show that the continued fraction of a real is computably random if and only40

if its binary expansion is.41

To quantify the degree of non-randomness, the topological notion of Hausdorff dimension42

[8] has been effectivized in computability and complexity theory in a series of works by43

Lutz [14], Lutz and Mayordomo [15], Mayordomo [17], Fernau and Staiger [5], and others.44

Generalizing the definition of random continued fractions using martingales, we define the45
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2 Randomness and dimension of continued fractions

effective Hausdorff dimension of sets of continued fractions, and of individual continued46

fractions, in the spirit of Lutz [14]. We construct examples of continued fractions with47

dimensions 0 and 1.48

The tools and techniques for base-2 randomness do not lend themselves easily to con-49

tinued fractions, which we can view as infinite sequences over a countably infinite alphabet.50

Topologically, this is a non-compact space. Further, the canonical shift-invariant measure51

on the space of continued fractions in [0, 1] is the Gauss measure, which is not a product52

measure, or even a Markov distribution [4], [2]. A study of effective Hausdorff dimension in53

this setting is new.54

Our main contributions are - martingale-based definitions of Martin-Löf random and55

computable random continued fractions, showing the preservation of Martin-Löf randomness56

and computable randomness when converting from binary expansion to continued fractions57

and vice versa, and a basic statistical property of random sequences. Further, we define58

effective Hausdorff dimension of sets of continued fractions and individual continued fractions59

using s-gales, and give explicit constructions of continued fractions with dimensions 0 and 1.60

We develop techniques and approximation methods related to Gauss measure, which may be61

of independent interest.62

2 Preliminaries63

Let N be the set of positive natural numbers, N∗ be the set of finite sequences of natural64

numbers, and N∞ be the set of infinite sequences of natural numbers. If a finite sequence65

v ∈ N∗ is a prefix of another finite sequence w ∈ N∗ or an infinite sequence X ∈ N∞, we66

represent it respectively by v v w and v v X. If v, w ∈ N∗, their concatenation is written as67

vw. λ denotes the empty string.68

We identify any finite string (a1, . . . , an) ∈ N∗, and any infinite sequence 〈ai〉i∈N with69

0 +
1

a1 +
1

. . . +
1
an

and 0 +
1

a1 +
1
. . .

(1)70

71

respectively. We denote this respectively as the finite continued fraction [0; a1, . . . , an] and72

the infinite continued fraction [0; a1, . . . ]. The continued fraction cylinder C[0;a1,...,ak] is the73

set of infinite continued fractions with [0; a1, . . . , ak] as a prefix.74

If v ∈ N∗, then the number of integers in v is denoted |v|. For j ∈ N, v � j denotes the75

substring consisting of the first j integers in v when j ≤ |v|, and v itself, otherwise. For76

X ∈ N∞ and j ∈ N, X � j denotes the substring consisting of the first j integers in X.77

In this work, we consider the probability space (N∞,B(N∞), γ) where B(N∞) is the Borel78

σ-algebra generated by the cylinders and γ is the Gauss measure defined on any A ∈ B(N∞)79

by γ(A) = 1
log 2

∫
A

1
x+1 dx. The Gauss measure is a translation-invariant probability on the80

space of continued fractions [4], [2].81

Similar notations apply for the binary expansions of reals. We designate the binary82

alphabet {0, 1} by Σ. Analogous with the notation for integers, let Σ∗ denote the set of finite83

binary strings, and Σ∞ the set of infinite binary sequences. We use λ for the empty string.84

For any w ∈ Σ∗, the binary cylinder Cw is the set of all infinite binary sequences with w85

as a prefix. The probability space on binary sequences is (Σ∞,B(Σ∞), µ) where B(Σ∞) is86

the Borel σ-algebra on Σ∞, and µ is the Lebesgue (uniform) probability measure defined for87

every Borel set A by µ(A) =
∫
A
xdx.88
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For w ∈ Σ∗, we denote µ(Cw) by µ(w), and analogously for v ∈ N∗ and γ.89

3 Useful estimates for continued fractions and the Gauss measure90

For [0; v1, . . . , vn], denote the rational represented by v � k by pk

qk
. This is called the kth

91

convergent of v. The standard continued fraction recurrence for computing convergents is92

given by (see for example, Khinchin [9])93

p−1 = 1, p1 = 0, pn = vnpn−1 + pn−2,94

q−1 = 0, q1 = 1, qn = vnqn−1 + qn−2.95

It follows that µ([0; v1, . . . , vk]) = 1
qk(qk+qk−1) for all 2 ≤ k ≤ n.96

I Lemma 1. Let C[0;a1,...,ak] be the cylinder set of an arbitrary finite continued frac-97

tion and C ′b1...bk
be the cylinder set of an arbitrary binary string of length k. Then,98

µ(Ca1,a2...an) ≤ µ(C ′b1,b2...bn
).99

The following estimate, which we can easily establish, shows a fairly tight relationship100

between Lebesgue measure and Gauss measure. The proof uses the fact that the Radon-101

Nikodym derivative dγ
dµ = 1

1+x is bounded in [0, 1].102

I Lemma 2. For any subinterval B of the unit interval, we have 1
2 ln 2µ(B) ≤ γ(B) ≤103

1
ln 2µ(B).104

4 Martingales on Continued fraction expansions105

The notion of binary supermartingales and their success sets is well-known in the study of106

algorithmic randomness and resource-bounded measure [12], [19], [3]. We recall the binary107

notion, and then define the notion of continued fraction supermartingales, by replacing the108

measure appropriately.109

I Definition 3. [3] A binary martingale d : Σ∗ → [0,∞) is a function with d(λ) <∞ and110

such that for every v ∈ Σ∗, d(v) = d(v0)+d(v1)
2 . We say that d : Σ∗ → [0,∞) is a binary111

supermartingale if d(λ) <∞, and the equality above is replaced with a ≥.112

A supermartingale or a martingale d succeeds on X ∈ Σ∞, denoted X ∈ S∞[d],113

if lim supn→∞ d(X � n) = ∞, and strongly succeeds on X, denoted X ∈ S∞str[d], if114

lim infn→∞ d(X � n) =∞.115

Analogously, we define the following.116

I Definition 4. A continued fraction martingale d : N∗ → [0,∞) is a function with d(λ) <∞117

and such that for every v ∈ N∗, d(v)γ(Cv) =
∑
n∈N d(vn)γ(Cvn). We say that d : N∗ → [0,∞)118

is a continued fraction supermartingale if d(λ) <∞, and the equality above is replaced with119

a ≥.120

A supermartingale or a martingale d succeeds on an infinite sequence X, denoted X ∈121

S∞[d], if lim supn→∞ d(X � n) = ∞, and strongly succeeds on X, denoted X ∈ S∞str[d], if122

lim infn→∞ d(X � n) =∞.123

We view the value d(w) as the capital that the martingale has if the outcome is w. Thus,124

a martingale is a “fair” betting condition on continued fractions where the expected value125

(with respect to the Gauss measure) of the capital after a bet is equal to the expected value126

before the bet. The reason for selecting Gauss measure in particular as the “canonical”127
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distribution is that it is translation invariant with respect to the continued fraction expansion,128

which is necessary to study statistical properties of sequences like normality.129

The following is a consequence of the definition of martingales.130

I Lemma 5. Let d : N∗ → [0,∞) be a supermartingale. Let v ∈ N∗ and S ⊆ N∗ be131

a prefix-free set where every w ∈ S is an extension of v with |w| ≤ k, k ∈ N. Then132 ∑
w∈S d(w)γ(w) ≤ d(v)γ(v).133

Now, we impose computability restrictions on the (super)martingale functions, analogous134

to the existing notions for the computability of martingales on finite alphabets [3].135

I Definition 6. A function d : N∗ −→ [0,∞) is called computably enumerable (alternatively,136

lower semicomputable) if there exists a total computable function d̂ : N∗ × N −→ Q ∩ [0,∞)137

such that the following two conditions hold.138

Monotonicity : For all w ∈ N∗ and for all n ∈ N, we have d̂(w, n) ≤ d̂(w, n+1) ≤ d(w).139

Convergence : For all w ∈ N∗, limn→∞ d̂(w, n) = d(w).140

A real number r is said to be lower semicomputable if there is a total computable141

function r̂ : N → Q such that for every n ∈ N, r̂(n) ≤ r̂(n+ 1) ≤ r, and limn→∞ r̂(n) = r.142

Note that if d is a lower semicomputable supermartingale, then for every v ∈ N∗, d(v) is a143

lowersemicomputable real, uniformly in N.144

I Definition 7. A function d : N∗ → [0,∞) is called computable if there is a total computable145

function d̂ : N∗ × N → Q ∩ [0,∞) such that for every w ∈ N∗ and n ∈ N, we have146

|d̂(w, n)− d(w)| ≤ 2−n.147

Note. By replacing N∗ with Σ∗, we get the analogous computability notions for binary148

supermartingales. For a computable function d, it is sufficient for the witness d̂ that for149

some f : N→ [0,∞), where f is a monotone computable function decreasing to 0 as n→∞,150

|d̂(w, n)− d(w)| ≤ f(n).151

For c.e. sequences of lower semicomputable martingales, we have the following universality152

result.153

I Theorem 8. If {d1, d2, . . . } : N∗ → [0,∞) is a computably enumerable sequence of lower154

semicomputable martingales then there exists a lower semicomputable martingale d that155

succeeds on ∪∞i=1S
∞[di], and which strongly succeeds on ∪∞i=1S

∞
str[di].156

We now define individual random continued fractions for the above computability notions.157

Random sequences are those on which martingales fail to make unbounded amounts of money.158

I Definition 9. We call a continued fraction X ∈ N∞ Martin-Löf random if no lower159

semicomputable supermartingale succeeds on X and computably random if no computable160

supermartingale succeeds on X.161

As it is well-known in the binary case using the “savings account trick” (see for example,162

[3] or [19]), the following theorem states that the notion of success and strong success coincide163

when we study Martin-Löf and computable randomness.164

I Theorem 10. If d : N∗ → [0,∞) is a supermartingale which succeeds on X ∈ N∗, then there165

is a supermartingale g : N∗ → [0,∞) and such that limn→∞ g(X � n) =∞. Moreover, if d is166

lower semicomputable, then so is g. If d is computable, then there is a function s : N∗ → [0,∞)167

which is monotone over lengths of inputs, such that g ≥ s and limn→∞ s(X � n) =∞, where168

g nand s are computable functions.1169

1 s is called the “savings account” of g.
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We can show that basic stochastic properties are satisfied by continued fraction randoms.170

I Theorem 11. Suppose X ∈ N∞ is computably random. Then every positive integer appears171

infinitely often in X.172

5 Continued fraction non-randoms are binary non-random173

The following lemmas are crucial in converting betting strategies on binary expansions into174

those on continued fractions, and conversely.175

I Lemma 12. Let 0 ≤ a < b ≤ 1, and
[
m
2k ,

m+1
2k

)
, where 0 ≤ m < 2k, be the smallest dyadic176

interval that covers [a, b). Then 1
2k ≤ 4(b− a).177

I Lemma 13. Let 0 ≤ a < b ≤ 1, and
[
m
2k ,

m+1
2k

)
, where 0 ≤ m < 2k, be the largest dyadic178

interval which is a subset of [a, b). Then 1
2k ≥ 1

4 (b− a).179

Now we show that if there is a martingale which succeeds on the continued fraction on a180

real number x, then there is a martingale that succeeds on its binary expansion with similar181

computability properties.182

I Theorem 14. Let x ∈ (0, 1) be an irrational with continued fraction expansion X and183

binary expansion B. Then the following hold.184

1. If X is non-Martin-Löf random, then its B is non Martin-Löf random.185

2. If X is not computably random, then B is not computably random.186

Proof. Let X and B be as given.187

Let d : N∗ → [0,∞) be a c.e. supermartingale which succeeds on X. By Theorem188

10, we can assume that lim infn→∞ d(X � n) = ∞, equivalently, for every integer M , for189

all sufficiently large prefix lengths n, d(X � n) ≥ M . We construct a c.e. martingale190

h : Σ∗ → [0,∞) which succeeds on B, using the martingale d.191

Note that for an arbitrary w ∈ {0, 1}∗, the continued fraction cylinder enclosing Cw may192

not coincide exactly with Cw, and that certain intervals may overlap with both Cw0 and193

Cw1. First, we introduce some notation to define the martingale.194

Let w ∈ Σ∗ and v ∈ N∗ be the continued fraction such that Cv is the smallest cylinder195

enclosing Cw. We classify the extensions of v as follows. Let I(w) = {vi | i ∈ N, Cvi ⊆ Cw}196

be the set of cylinders which are contained in Cw. Let P (w) = {vi | i ∈ N, Cvi ∩ Cw 6=197

∅, Cvi * Cw} be the set of cylinders which partially intersect Cv, but are not contained in it.198

Then, let199

h(w) =
∑

y∈I(w)

d(y) γ(y)
µ(w)

1
2
∑

y∈P (w)

d(y) γ(y)
µ(w) . (2)200

201

Since µ(w0) = µ(w1) = µ(w)
2 , we have that202

203

[h(w0) + h(w1)]µ(w)
2 =

∑
y∈I(w0)∪I(w1)

d(y)γ(y) +
∑

y∈P (w0)∩P (w1)

d(y)γ(y)+204

1
2

∑
y∈P (w0)⊕P (w1)

d(y)γ(y),205

206
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where ⊕ denotes the symmetric difference of sets. Note that every y ∈ I(w0) ∪ I(w1) ∪207

(P (w0) ∩ P (w1)) is an extension of some v ∈ I(w). By Lemma 5, we have208 ∑
y∈I(w0)∪I(w1)∪(P (w0)∩P (w1))

d(y)γ(y) ≤
∑

v∈I(w)

d(v)γ(v).209

210

Further, every y ∈ P (w0)⊕ P (w1) is an extension of some v ∈ P (w). Hence211 ∑
y∈P (w0)⊕P (w1)

d(y)γ(y) ≤
∑

v∈P (w)

d(v)γ(v).212

213

We have214

[h(w0) + h(w1)]µ(w)
2 ≤

 ∑
v∈I(w)

d(v)γ(v) + 1
2
∑

v∈P (w)

d(v)γ(v)

 = h(w)µ(w),215

216

whence h is a supermartingale.217

Let M be an arbitrary positive real, and let v v X be a prefix such that for all longer218

prefixes, d(v) ≥M .219

Let w v B be the string designating the largest binary cylinder Cw ⊆ Cv. We show that220

h(w) ≥ cM for some constant c > 0 which is independent of w, v, and M .221

By Lemma 13, we know that the largest dyadic interval which is a subset of Cv has222

Lebesgue measure at least 1/4 of the Lebesgue measure of Cv. Thus,223

γ(Cv ∩ Cw) ≥ µ(Cv ∩ Cw)
2 ln(2) ≥ µ(Cv)

8 ln(2) ≥
γ(Cv)

8 .224

225

The first and third inequalities above are consequences of Lemma 2 (see also [4], Section 3.2)226

and the second, Lemma 13.227

By definition, we have228

h(w) ≥M

 ∑
y∈I(w)

γ(y)2|w| + 1
2
∑

i∈P (w)

γ(y)2|w|
229

≥ M

2

 ∑
y∈I(w)

γ(y)2|w| +
∑

y∈P (w)

γ(y)2|w|
230

≥ M

2 γ(Cv ∩ Cw)2|w|.231
232

From the bound above, we obtain233

h(w) ≥ M

2
γ(Cv ∩ Cw)
µ(Cw) ≥ M

16
γ(Cv)
µ(Cw) = M

32 ln 2
µ(Cv)
µ(Cw) ≥

M

32 ln(2) ,234

235

where the last inequality follows from the fact that Cv ⊇ Cw. Thus h succeeds on the same236

real.237

If d is lower semicomputable, from equation (2), it is clear that h is the sum of lower238

semicomputable terms involving a computable decision (i.e. i ∈ I(wb) and i ∈ P (wb)). Hence239

h is a lower semicomputable function.240

Now, suppose d is computable. Observe crucially that |I(wb)| <∞ for one bit b ∈ {0, 1}.241

Assume, without loss of generality, that |I(w0)| < ∞. Hence, h(w0) is a sum of finitely242

many computable terms, involving a computable decision. Moreover, h(w1) = h(w)−h(w0)
2 is243

a difference of computable terms. It follows that h is computable. J244
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6 Binary non-randoms are continued fraction non-random245

We now show that if the binary expansion of a real number is non-Martin-Löf-random, then246

so is its continued fraction expansion.247

I Theorem 15. Let x be an irrational in [0, 1] with continued fraction expansion X and248

binary expansion B. If B is not Martin-Löf random, then X is not a Martin-Löf random249

continued fraction. If B is not computably random, then X is not a computably random250

continued fraction.251

Proof. Let d : Σ∗ → [0,∞) be a martingale with B ∈ S∞str[d]. By Lemma 25, we may assume252

that d ≥ 2−c for some c ∈ N, c > 0.253

Construct a collection of sets 〈Lv〉v∈N∗ by letting Lλ = {λ} and254

Lvi = {w ∈ Σ∗ | (∃u v w) u ∈ Lv, (@u @ w) u ∈ Lvi, Cw ⊆ Cvi}. (3)255
256

Dyadic rationals are dense in [0, 1]. Hence Lv contains a unique prefix of every irrational in257

Cvi. By construction, every Lv is a prefix-free set. Further, membership of w in Lv can be258

decided by ensuring that for every prefix v′ @ v, there is some u v w in Lv′ , and no w′ @ w259

is in Lv, and by checking that Cw ⊆ Cv. Hence Lvs are decidable uniformly in v.260

Let h : N∗ → [0,∞) be defined by261

h(v) =
∑
w∈Lv

(log2 d(w) + c+ 1)µ(w)
γ(v) .262

263

Since d ≥ 2−c, it follows that h is a positive real-valued function.264

We know that log2 d+ c+ 1 is a supermartingale by Lemma 26. We have265 ∑
i∈N

h(vi)γ(vi) =
∑
i∈N

∑
w∈Lvi

(log2 d(w) + c+ 1)µ(w) ≤
∑
u∈Lv

∑
i∈N,

w∈Lvi,
uvw

(log2 d(w) + c+ 1)µ(w).266

267

Since Lvi is a prefix-free set for each i ∈ N, by the Kolmogorov inequality [19], the above is at268

most
∑
u∈Lv

(log2 d(u)+c+1)µ(u), which is h(v)γ(v), establishing that h is a supermartingale.269

Suppose the savings account function of the log2 d+ c+ 1 supermartingale is denoted270

sd. Then for every D ∈ Σ∞ and every n ∈ N, we have sd(D � n) ≤ sd(D � n+ 1) and that271

limn→∞ sd(B � n) =∞. If sd(u) ≥M > 0, where Cu is the smallest cylinder which covers272

Cv, v ∈ N∗, then we have273

h(v) ≥
∑
w∈Lv

sd(w)µ(w)
γ(v) ≥

M

γ(v)
∑

w∈L(v)

µ(w) = Mµ(v)
γ(v) ,274

275

where the equality follows by Lemma 27. By Lemma 13, similar to the argument of the276

converse direction, we conclude that the above quantity is at least M ln(2). It follows that277

X ∈ S∞str[d].278

If d is lower semicomputable, then so is (log2 d+ c+ 1). Since Lv is decidable uniformly in279

v, it follows that h is the sum of a computably enumerable sequence of lower semicomputable280

terms, hence is lower semicomputable.281

If d is computable, then so is (log2 d+ c+ 1), witnessed by, say, ˆ̀
d : N∗ ×N→ [0,∞)∩Q.282

For each v ∈ N∗, let 〈wv,j〉j∈N be a computable enumeration of Lv in increasing order, which283



8 Randomness and dimension of continued fractions

exists since Lv is decidable. Hence, ĥ : N∗ × N → [0,∞) ∩ Q defined below witnesses the284

computability of h. For v ∈ N∗ and n ∈ N, define285

ĥ(v, n) =
Nv,n∑
j=1

ˆ̀
d(wv,j)

µ(wv,j)
γ̂(v, n) ,286

287

where288

Nn,v = min

m ∈ N |
m∑
j=1

µ(wv,j) > µ(vi)− 2−n
 .289

290

Then, Nn,v exists for all n and v by Lemma 27. Moreover, Nn,v is computable uniformly in291

n and v. We now show that for all n, |ĥ(v, n)− h(v)| ≤ (2 + c+ 1)2−n, showing that h is292

computable.293

For any w ∈ Σ∗, we know that d(w) ≤ 2|w|, hence log2 d(w) + c+ 1 ≤ |w|+ c+ 1. Further,294 ∑∞
j=Nn+1 µ(wv,j) ≤ 2−n. Hence,295

∞∑
j=Nn+1

log2 d(wv,j) + c+ 1
2|wv,j |

≤
∞∑

j=Nn+1

|wv,j |+ c+ 1
2|wv,j |

,296

297

which, by Lemma 28, is upper bounded by a term computable from n and decreasing to 0 as298

n→∞. It follows that h is computable. J299

7 Effective dimension of continued fractions using s-gales300

Adapting the approach of Lutz [14], Lutz and Mayordomo [15] for finite alphabets, we define301

effective Hausdorff dimension of sets of continued fractions.302

I Definition 16. Let s ∈ [0,∞) and N∞ denote the set of infinite sequences of positive303

integers.304

A continued fraction s-gale is a function d : N∗ −→ [0,∞) that satisfies the condition

d(w)[γ(Cw)]s =
∑
i∈N

d(wi)[γ(Cwi)]s

for all w ∈ N∗.305

We say that d succeeds on a sequence Q ∈ N∞ if lim sup
n→∞

d(Q � n) =∞.306

The success set of d is S∞(d) = {Q ∈ N∞| d succeeds on Q}.307

For X ⊆ N∞,G(X ) denotes the set of all s ∈ [0,∞) such that for every X ∈ X , there308

exists a lower semicomputable continued fraction s-gale d which succeeds on X.309

The effective Hausdorff dimension of a set S ⊆ N∞ is the infimum of the set G(X).310

It is possible to view s-gales as martingales with a specified rate of success. First, we311

show that an s-gale can be converted into a martingale by multiplying the capital of the312

s-gale with an adjusted rate for the success. This is similar to the corresponding result for313

binary s-gales and martingales in [14].314

I Lemma 17. Let d : N∗ → [0,∞) be an s-gale. Then g : N∗ → [0,∞) defined by315

g(v) = d(v)γs−1(v) is a continued fraction martingale.316
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Proof. It is clear that g(λ) = 1. Further, for v ∈ N∗, we have∑
i∈N

g(vi)γ(vi) =
∑
i∈N

d(vi)γs−1(Cvi)γ(vi) =
∑
i∈N

d(vi)γs(vi) = d(v)γs(v) = g(v)γ(v),

where the penultimate equality follows since d is an s-gale. J317

The following helps us to relate the success rate of martingales to the dimension.318

I Lemma 18. Let d : N∗ → [0,∞) be a lower semicomputable continued fraction martingale,
and s ∈ (0, 1). If X ∈ N∞ has infinitely many prefix lengths n for which

d(X � n) ≥ γs−1(X � n),

then dim(X) ≤ s.319

Thus, we have the following characterization of dimension of continued fractions in terms320

of the success rate of martingales.321

I Theorem 19. For any X ∈ N∞, s ∈ (0, 1), we have dim(X) ≤ s if and only if there is a322

continued fraction martingale d : N∗ → [0,∞) such that for infinitely many n, d(X � n) ≥323

γs−1(CX�n).324

8 Continued fractions with dimension 0 and computability325

I Lemma 20. Every computable continued fraction has effective dimension zero.326

Proof. Let X = [0; a1, a2, . . . ] be an arbitrary continued fraction such that ai ∈ N. Let M327

be total computable function on N such that for all i ∈ N, M(i) = ai.328

Consider the function d : N∗ → [0,∞) which bets all of current capital along the sequence329

computed by M , defined by d(a1, a2, . . . an) = γ−s(Ca1,a2,...an). Let d(v) = 0 if v is not a330

prefix of X.331

Then d is an s-gale, since for every v ∈ N∗ which is a prefix of S,332 ∑
i∈N

d(vi)γs(Cvi) =
γs(CvM(|v|))
γs(CvM(|v|))

= 1 = γ−s(Cv)γs(Cv) = d(v)γs(Cv).333

334

For v ∈ N∗ which is not a prefix of X, d(v) = 0, hence
∑
i∈N d(vi)γs(Cvi) = 0 = d(v)γs(Cv).335

Since γ([0; a1, . . . , an])→ 0 as n→∞ and s > 0, it follows that γ−s([0; a1, . . . , an])→∞336

as n→∞. Hence X ∈ S∞[d]. Since s was arbitrary, the infimum of all s such that there is337

an s-gale which succeeds on X is 0. J338

However, the converse does not hold in general. We show that there are uncomputable339

continued fractions with dimension 0.340

The standard technique for binary sequences uses the notion of “dilution” - we add a few341

bits from a Martin-Löf random sequence, and intersperse it with a large number of 0s. By342

making the number of zeroes grow in an unbounded manner, we can construct a dimension 0343

sequence.344

Surprisingly, with continued fractions, we can perform this “dilution” by following every345

“random” integer with a single integer. We do not require arbitrarily long computable346

stretches. We are able to do this since the underlying alphabet is infinite.347

To make the continued fraction uncomputable, at every odd location, we copy the integer348

from a Martin-Löf random continued fraction. To make the continued fraction have dimension349
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0, at every even location, we computably choose a large integer so that an s-gale can make350

unbounded amounts of money by betting.351

The construction is involved, because the underlying probability measure, Gauss measure,352

is not a product distribution. Hence the choice of these “large integers” at even locations353

necessarily depend on the previous integers. The argument which follows uses several354

approximation techniques.355

I Lemma 21. There is an uncomputable continued fraction with dimension 0.356

Proof. Let Y be a Martin-Löf random continued fraction. Let X be the continued fraction357

defined by358

X[n] =
{
Ydn/2e if n is odd,
f(X � n− 1) otherwise,

359

360

where f : N∗ → N defined by f(v) = [max(v)+2](|v|)2 for v ∈ N∗. We show that dimγ(X) = 0.361

It suffices to show that for all s ∈ (0, 1), there is an s-gale that succeeds on X.362

Consider the computable function d : N∗ → [0,∞) defined by d(λ) = 1 and for every v of363

odd length and i ∈ N, letting d(vi) = d(v)γ1−s(Cvi|v). For every v of even length, j = f(v),364

let d(vj) = d(v)γ−s(Cvj|v), and for k 6= f(v), let d(vk) = 0.365

If |v| is odd, then366 ∑
i∈N

d(vi)γs(vi|v) = d(v)
∑
i∈N

γ1−s(vi|v)γs(vi|v) = d(v)
∑
i∈N

γ(vi|v) = d(v),367

368

and if |v| is even, then letting j = f(v),369 ∑
i∈N

d(vi)γs(vi|v) = d(v)γ
s(vj|v)
γs(vj|v) = d(v).370

371

Hence d is an s-gale.372

We show now that X ∈ S∞[d]. Denote X � 2k− 1 by v. Let X[2k] = Y [k] be denoted by373

i and X[2k + 1] = f(vi) be denoted by j. Then374

d(vij)
d(v) = 1

γs−1(vi|v)γs(vij|vi) = γ(vi|v)
γs(vi|v)γs(vij|vi) ≥

γ(vi|v)
γs(vij|vi) ,375

376

since 0 ≤ γs(vi|v) ≤ 1. By Lemma 2, it follows that377

γ(vi|v)
γs(vij|vi) ≥

µ(vi|v)
2(ln 2)1−sµs(vij|vi) .378

379

We have that µ(vi|v) is380

q2k−1(q2k−1 + q2k−2)
q2k(q2k + q2k−1) ≥

q2
2k−1
2q2

2k
=
(

q2
2k−1

2(iq2k−1 + q2k−2)2

)
≥
(

q2
2k−1

2(i+ 1)2q2
2k−1

)
= 1

2(i+ 1)2 ≥
1

2(m+ 2)2 ,381
382

where m = max(vi). Similarly383

1
µ(vij|vi) = q2k+1(q2k+1 + q2k)

q2k(q2k + q2k−1) ≥
q2k+1

q2k + q2k−1
= jq2k + q2k−1

q2k + q2k−1
≥ jq2k + q2k−1

2q2k
≥ j

2384

385

Since j = (m+ 2)4k2 , it follows that386

µ(vi|v)
2(ln 2)1−sµs(vij|vi) ≥

1
2(m+ 2)2

(m+ 2)4k2s

2s+1(ln 2)1−s = (m+ 2)4k2s−2

2s+2(ln 2)1−s387

388

For fixed s, as k →∞, the above quantity is greater than 2. It follows that d succeeds on X.389

Since s ∈ (0, 1) was arbitrary, we can conclude that dimγ(X) = 0. J390
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9 Continued fractions with dimension 1 and Martin-Löf randomness391

In this section, we study the relationship between Martin-Löf randomness of continued392

fractions, normality of continued fractions, and the notion of effective dimension 1. We show393

that all Martin-Löf random continued fractions have effective dimension 1. However, there394

are continued fractions with effective dimension 1, which are normal as well, but which are395

not Martin-Löf random.396

I Lemma 22. Every Martin-Löf random continued fraction has effective dimension 1.397

Proof. Let Y ∈ N∞ have s = dim(Y ) ≤ 1. Let d : N∗ → [0,∞) be a lower semicomputable
s-gale that succeeds on Y . Consider the lower semicomputable function h : N∗ → [0,∞)
defined by h(v) = d(v)γs−1(Cv), for v ∈ N∗. Then∑

i∈N
h(vi)γ(Cvi) =

∑
i∈N

d(vi)γs(Cvi) = d(v)γs(Cv) = h(v)γ(Cv),

where the second last equality follows by the fact that d is an s-gale.398

Suppose d(Y � n) > M . Then h(Y � n) > Mγs−1(Y � n) > M . Since Y ∈ S∞[d], it399

follows that Y ∈ S∞[h]. Hence Y is not a Martin-Löf random continued fraction. J400

However, there are sequences with c.e. dimension 1, which are not random. The idea is401

to intersperse the integer “1” at computable locations which are spaced very sparsely apart.402

The proof that the resulting number is not Martin-Löf random uses the following estimate403

on conditional Gauss probabilities, which, to our knowledge, is not present in literature.404

I Lemma 23. For any v = [0; v1, . . . , vn] ∈ N∗, we have405

1
2 ln(2)(2vn + 3) ≤ γ(Cv1|v) ≤

1
2 ln(2) .406

407

The above lemma shows that the conditional probability of 1 in any cylinder [0; v1, . . . , vn, 1]408

can be arbitrarily small if vn is arbitrarily large. Hence a betting function to win arbitrarily409

large amounts. In the following constructions in the paper, unlike in the dimension 0410

construction, it becomes necessary to allow a betting function to win, but also to prevent411

large wins, at specific positions. We control this winning amount by inserting 1s at computable412

locations only when vn is bounded.413

I Lemma 24. There is a continued fraction with effective dimension 1, which is normal,414

but which is not Martin-Löf random.415

Proof. Let Y be a Martin-Löf random continued fraction. We construct X ∈ N∞ in stages,416

as follows.417

At each stage s ≥ 1, we copy at least s! integers from Y into X, maintaining the relative418

order. Associated with each stage, we keep a cumulative count Ns of the number of integers419

we have copied from Y , in stages 1 through s inclusive.420

Construction. At stage 1, we set X[i] = Y [i] starting from i = 1, until we see a position421

with Y [i] = 1. We denote this position as N1. Such a position always exists since Y is422

Martin-Löf random by Theorem 11. Set X[N1 + 1] = 1.423

Note that at every stage, we insert exactly one 1 into X, which is not present in Y .424

At stage s > 1, we proceed as follows. Note that X is longer than Y by exactly s − 1425

digits at the start of stage s. Set X[Ns−1 + (s− 1) + j] = Y [Ns−1 + j], for j from 1 through426

at least s!, and until we encounter a position in Y which has a 1. Such a position exists427
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by the normality of Y . We denote this position as Ks, and let Ns = Ns−1 + Ks. Set428

X[Ns + (s− 1) + 1] = 1.429

Let PX be the set of positions where we have inserted ones into X, and PY be the set of430

positions in Y after which we have inserted ones in X while copying. At each stage s, we431

copy at least s! entries from Y before inserting the additional 1 into X. Note that PY is432

computable from Y . Hence for all sufficiently large n, the number of entries in PX and PY433

which are less than or equal to n is o(logn). (End of construction)434

Verification. We now show that there is a lower semicomputable martingale d : N∗ →
[0,∞) which succeeds on X, showing that X is not Martin-Löf random. Let d(λ) = 1, and
for every v ∈ N∗, if |v| + 1 /∈ PX , then d(vi) = d(v). It is clear that on these v ∈ N∗, the
martingale condition is satisfied. If |v| + 1 ∈ PX , then let d(v1) = d(v)γ−1(Cv1|v), and
d(vj) = 0 for all j 6= 1. For such v ∈ N∗, we have∑

i∈N
d(vi)γ(Cvi|v) = d(v1)γ(Cv1|v) = d(v)

γ(Cv1|v)
γ(Cv1|v)

= d(v),

proving that d is a martingale. Since checking for membership in P is computable based on435

the prefix v, it follows that d is lower semicomputable.436

To see that d succeeds on X, we observe that at every position in P , d multiplies its437

previous capital by γ−1(Cv1|v), and on other prefixes of X, d preserves its capital. By Lemma438

23, γ−1(Cv1|v) ≥ 2 ln 2. Thus, limn→∞ d(X � n) =∞.439

We now show that if dim(X) < 1, then Y is not Martin-Löf random. Let s ∈ (0, 1)440

and h : N∗ → [0,∞) be a lower semicomputable s-gale which succeeds on X. At positions441

n ∈ PX , we can assume without loss of generality that442

h(X � n) = h(X � (n− 1)) γ−s((X � (n− 1))1 | (X � (n− 1))), (4)443
444

i.e. h attains the maximum possible capital on the positions in PX .445

Construct a martingale g : N∗ → [0,∞) thus. Let g(λ) = 1. If v ∈ N∗ is such446

that |v| /∈ PY , then for every i ∈ N, let g(vi) = h(vi)γs−1(vi). Otherwise, let g(vi) =447

h(v1i)γs(v1|v)γs−1(vi).448

If v belongs to the first case above, then449 ∑
i∈N

g(vi)γ(vi) =
∑
i∈N

h(vi)γs−1(vi)γ(vi) =
∑
i∈N

h(vi)γs(vi) = h(v)γs(v) = g(v)γ(v),450

451

and otherwise,452 ∑
i∈N

g(vi)γ(vi) =
∑
i∈N

h(v1i)γs(v1|v)γs(vi) = h(v1)γs(v1|v)γs(v) = h(v)γs(v) = g(v)γ(v),453

454

where the second equality follows since h is an s-gale, and the third inequality follows by (4).455

Hence, g is a lower semicomputable martingale.456

By Lemma 1 and 2, γs−1(vi) > 2(1−s)|vi|(ln 2)1−s. Recall that PY contains o(logn)457

elements which are less than n. Since every position in PX is preceded by vn = 1, it follows458

that γs(v1|v) ≥ 1/(10 ln(2)) for every v with |v| ∈ PY . Hence g(Y � n) ≥ 2(1−s)n(ln 2)1−s

n459

which tends to ∞ as n→∞. Hence Y is not Martin-Löf random, which is a contradiction.460

Since s is arbitrary, it follows that dim(X) = 1. J461
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Appendix508

Proof of Lemma 1. We know that Lebesgue measure of C ′p(cylinder set of the binary ex-509

pansion) is equal to 1
2n where |p| = n. We now prove by mathematical induction on n510

that,511

µ(C[0;a1,a2...an]) ≤
1
2n512

513

Base case : µ(C[0;a1]) = 1
a1(a1+1) which is strictly decreasing in a1. The maximum occurs514

at a1 = 1, where µ(C1) = 1
2 , as required.515

Inductive step : We assume that the above claim is true till some k.516

µ(C[0;a1,a2...ak]) ≤
1
2k517

518

Now, assume pk

qk
is the kth convergent of [0; a1, a2 . . . ].519

µ(C[0;a1,a2...ak]) =

∣∣∣∣∣pkqk − pk + pk−1

qk + qk−1

∣∣∣∣∣ = pkqk−1 − qkpk−1

qk(qk + qk−1) ≤ 1
2k (5)520

We show that521

µ(C[0;a1,a2...ak,ak+1]) ≤
1

2k+1522
523

We have524

µ(Ca1,a2...ak,ak+1) =

∣∣∣∣∣ak+1pk + pk−1

ak+1qk + qk−1
− (ak+1 + 1)pk + pk−1

(ak+1 + 1)qk + qk−1

∣∣∣∣∣525

=

∣∣∣∣∣ pk−1qk − pkqk−1

(ak+1qk + qk−1)(qkqk+1 + qk + qk−1)

∣∣∣∣∣526

527

By multiplying and dividing on numerator and denominator with qk(qk + qk−1) we get,528

µ(Ca1,a2...ak,ak+1) =

∣∣∣∣∣pk−1qk − pkqk−1

qk(qk + qk−1)

∣∣∣∣∣
∣∣∣∣∣ qk(qk + qk−1)
(ak+1qk + qk−1)(qkqk+1 + qk + qk−1)

∣∣∣∣∣529

530

From our assumption, equation (5) signifies that left term is less than or equal to 1
2k . We531

show that the right term is less than 1
2 . We have532 ∣∣∣∣∣ qk(qk + qk−1)

(ak+1qk + qk−1)(qkqk+1 + qk + qk−1)

∣∣∣∣∣ =

∣∣∣∣∣ (qk + qk−1)
(ak+1qk + qk−1)(ak+1 + 1 + qk−1

qk
)

∣∣∣∣∣.533

534

The above term is less than 1
2 by the fact that ak+1, qk, qk−1 are always greater than or535

equal to 1, thus establishing the result.536

J537

Proof of Lemma 2. For any interval B,538

γ(B) = 1
ln 2

∫
B

1
1 + x

dx.539

540
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Since 0 ≤ x ≤ 1, we know that 0.5 ≤ 1
1+x ≤ 1. By the definition of Lebesgue measure, we541

have µ(B) =
∫
B
dx. Hence, we have542

1
2 ln 2µ(B) ≤ γ(B) ≤ 1

ln 2µ(B).543
544

J545

Proof of Lemma 5. We prove the result by induction on k. Initially, assume that k = |v|+1.546

Then,
∑
w∈S d(w)γ(w) ≤

∑
i∈N d(vi)γ(vi) ≤ d(v)γ(v) since d is a supermartingale. Suppose547

the claim holds when strings in S have length at most k, and we show that the claim holds548

when strings in S have length at most k + 1.549

Let w w v and |w| = k. Then550 ∑
w′∈S
w′Aw

d(w′)γ(w′) ≤ d(w)γ(w),551

552

by the inductive hypothesis. Hence
∑
w′∈S d(w′)γ(w′) can be upper bounded by553 ∑

vvwvw′
|w|=k

d(w)γ(w),554

555

which by the inductive assumption, is at most d(v)γ(v). J556

Proof of Theorem 8. Let d1, d2, . . . be the martingales as given. Now consider the martin-557

gale d such that d(w) =
∑∞
i=1 di(w)2−i, for any w ∈ N∗.558

We now prove that d is a martingale. Since di(λ) = 1 for every i = 1, 2, . . . , it is clear559

that d(λ) = 1. We have560

d(w)γ(Cw) =
[ ∞∑
i=1

di(w)
2i

]
γ(Cw) =

∞∑
i=1

∞∑
j=1

[
di(wj)

2i

]
γ(Cwj)561

562

since di, i = 1, 2, . . . , are martingales. Thus, we have d(w).γ(Cw) =
∑∞
j=1 d(wj).γ(Cwj). It563

follows that d is a martingale.564

For each martingale di, i = 1, 2, . . . , let d̂i : N∗ × N → Q ∩ [0,∞) be a function565

witnessing its lower semicomputablility. Then, the function d̂ : N∗ × N → Q ∩ [0,∞)566

defined by d̂(w, n) =
∑∞
i=1 d̂i(w, n)2−i, for any w ∈ N∗ and n ∈ N, witnesses the lower567

semicomputability of d.568

Let X ∈ S∞[di] (or, alternatively, X ∈ S∞str[d]). Assume that on some prefix X � n, we569

have di(X � n) ≥M , for some M > 0 and positive integer i. Since dj , j 6= i, are non-negative570

functions, d(X � n) ≥ di(X � n)/2 > M/2i. Note that the multiplication factor 1
2i depends571

only on di and not on either M or X. Hence we conclude that if lim supn→∞ d1(X � n) =∞,572

then lim supn→∞ d(X � n) =∞, and if lim infn→∞ d1(X � n) =∞, then lim infn→∞ d(X �573

n) =∞. J574

Proof of Theorem 10. Let d be a lower semicomputable supermartingale which succeeds on575

X. Define, for all integers n ≥ 1, the function gn : N∗ → [0, 1] as follows. Let gn(λ) = d(λ)
2n .576

For v ∈ N∗ and i ∈ N, if gn(v) ≥ 1, then let gn(vi) = 1. Otherwise, let g(vi) =577

min{d(vi)
2n , 1}.578

Let v ∈ N∗ satisfy gn(v) ≥ 1. Then for every i ∈ N, gn(vi) = 1, and we have∑
i∈N

gn(vi)γ(i|v) =
∑
i∈N

γ(i|v) = 1 ≤ gn(v)
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hence the supermartingale condition holds at v. Otherwise, we have gn(v) = d(v)2−n < 1,
and thus gn(vi) = min{d(vi)2−n, 1}. Hence,∑

i∈N
gn(vi)γ(i|v) ≤ 2−n

∑
i∈N

d(vi)γ(i|v) ≤ 2−nd(v) = gn(v),

establishing that gn is a supermartingale.579

Let d̂ : N∗ × N→ [0,∞) witness the lower semicomputability of d. Then ĝn : N∗ × N→580

[0,∞) defined below, witnesses the lower semicomputability of gn. Let ĝn(λ,m) = d̂(λ,m)
2n for581

all m. For v ∈ N∗, and i,m ∈ N, define582

ĝn(vi,m) =
{

min{d̂(vi,m)2−n, 1} if ĝn(v,m) < 1
1 otherwise.

583

584

We show that for every v, i and m, ĝn(vi,m) ≤ ĝn(vi,m+ 1) ≤ gn(vi,m).585

Fix v ∈ N∗ and i ∈ N. If for all m ∈ N, the computation above falls entirely within the586

first case, or entirely within the second case, then the monotonicity of ĝ follows from the587

monotonocity of d̂.588

Now suppose that for finitely many m, the computation falls into the first case, and for589

all sufficiently large m, the second case applies. This implies that g(v) ≥ 1. Hence gn(vi) = 1.590

Then for all m, ĝn(vi,m) ≤ 1 = gn(vi). Further, by the monotonicity of d̂, we also have591

ĝn(vi,m) ≤ ĝn(vi,m+ 1).592

To see that convergence holds, first observe that if gn(v) ≥ 1, then the second case593

applies for all sufficiently large m, whence we have ĝn(vi,m) = 1, which is the value of gn(vi).594

Suppose, otherwise, that gn(v) < 1. The first case always applies, and the convergence of d̂595

implies that the computation converges to min{d(vi)2−n, 1}, as required.596

Define the function g =
∑∞
n=1 gn. Then g is a lowersemicomputable supermartingale.597

Since d succeeds on X, for any M , there is an n ∈ N on which d(X � n) ≥ 2M . Hence, for598

all n′ ≥ n, g1(X � n′), . . . , gM (X � n′) ≥ 1, implying that for all n′ ≥ n, g(X � n′) ≥M . It599

follows that lim infn′→∞ g(X � n′) =∞, as required.600

Now, suppose d is a computable supermartingale which succeeds on X. Then we define601

computable functions g, h and s: N∗ × N → [0,∞) such that g = h + s, and g is a602

supermartingale which strongly succeeds on X, with g ≥ s and s monotone increasing over603

prefix lengths.604

We define h by initially letting h(λ) = 1. Associated with each string v, we keep an605

integer mv. Initially, mλ = 2. For an arbitrary v ∈ N∗, i ∈ N, we let606

h(vi) = d(vi)
d(v) h(v)607

608

if this amount is at most 2mv , and let s(vi) = s(v). Otherwise609

h(vi) = d(vi)
d(v) h(v)− 1,610

611

let s(vi) = s(v) + 1 and let mvi = mv + 1.612

Let vi, v ∈ N∗, i ∈ N be a string where the second case applies. Then613

h(vi) + s(vi) = d(vi)
d(v) h(v)− 1 + s(v) + 1 = d(vi)

d(v) h(v) + s(v),614

615
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and this is identical to the value when the first case applies. Hence, we have616

∑
i∈N

g(vi)γ(i|v) =
[∑
i∈N

d(vi)γ(i|v)
]
h(v)
d(v) + s(v)

∑
i∈N

γ(i|v) ≤ h(v) + s(v) = g(v),617

618

since d is a supermartingale. Thus g is a supermartingale.619

Since division and subtraction are computable, and d is computable, it follows that620

g, s and h are computable. Moreover, if there is an n for which d(X � n) ≥ 2M , then621

for all n′ > n, s(X � n′) ≥ M . Since lim supn→∞ d(X � n) = ∞, we conclude that622

lim infn→∞ g(X � n) ≥ lim inf s(X � n) =∞. J623

Proof of Theorem 11. Let X ∈ N∞ and m be the least positive integer that appears only624

finitely often in X. Let m 6= Xk for k ≥ K0. Consider d : N∗ → [0,∞) defined by d(λ) = 1,625

and for arbitrary strings as follows. For v ∈ N∗ with |v| < K0, for every i ∈ N, let d(vi) = 1.626

For v ≥ K0, and i ∈ N, let627

d(vi) =
{

d(v)
1−γ(vm|v) if i 6= m

0 otherwise.
628

629

If |v| < K0, for every i ∈ N,
∑
i∈N d(vi)γ(vi|v) = 1 = d(v). For |v| ≥ K0, then we have630

∑
i∈N

d(vi)γ(vi|v) = d(v)1− γ(vm|v)
1− γ(vm|v) = d(v),631

632

establishing that d is a martingale. It is clear that d is computable since γ(vm|v) 6= 0 and γ633

is a computable probability measure.634

For sufficiently large n,635

d(X � n) ≥
n∏

i=K0+1

1
1− γ((X � i)m | (X � i)) .636

637

We lower bound γ(vm|v) over v ∈ N∗ as follows. Let v = [0; v1, . . . , vn]. Let pn

qn
= v and638

pn−1
qn−1

= [0; v1, . . . , vn−1]. Then we have639

µ(vm)
µ(v) = qn(qn + qn−1)

qn+1(qn+1 + qn) >
q2
n

2q2
n+1

= q2
n

2(mqn + qn−1)2 ≥
q2
n

2(m+ 1)2q2
n

= 1
2(m+ 1)2 .640

641

Hence,642

γ(vm|v) ≥ 1
4 ln 2(m+ 1)2 = c,643

644

say. Then 0 < c < 1.645

We have d(X � n) ≥ (1− c)−n+K0 . Hence X ∈ S∞str[d]. J646

Proof of Lemma 12. Let j = b− log2(b− a)c+ 1. We know that647

− log2(b− a) ≤ j ≤ − log2(b− a) + 1,648
649

hence (b− a) ≥ 2−j ≥ (b− a)/2. It follows that exactly dyadic rational of the form m/2j ,650

0 ≤ m < 2j is in (a, b).651

It follows that four dyadic intervals of length 1
2j cover the interval [a, b]. J652
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Proof of Lemma 13. Let j be the smallest integer such that 1
2j ≤ (b− a). By the proof of653

the previous lemma, 1
2j ≥ (b− a)/2.654

Hence there is some dyadic interval (k/2j+1, (k + 1)/2j+1) which is a subinterval of [a, b).655

Since 1
2j ≥ (b− a)/2, we have 1/2j+1 ≥ 1

4 (b− a). J656

Proof of Lemma 18. Let d be a martingale, s ∈ (0, 1) and s′ be an arbitrary real such that657

s < s′ < 1. It suffices to show that an s′-gale d′ : N∗ → [0,∞) succeeds on X. Define, for658

every v ∈ N∗, d′(v) = d(v)γ1−s′(v). Then d′(λ) = 1 and, for all v ∈ N∗,659 ∑
i∈N

d′(vi)γs
′
(vi) =

∑
i∈N

d(vi)γ1−s′(vi)γs
′
(vi)660

=
∑
i∈N

d(vi)γ(vi)661

= d(v)γ(v)662

= d′(v)γ1−s′(v)γs
′
(v),663

664

as required, where the penultimate equality holds since d is a martingale.665

If d(X � n) ≥ γs−1(CX�n), then d′(X � n) ≥ γs−1(CX�n)γ1−s′(CX�n) = γs−s
′(CX�n).666

Since s− s′ < 0, limn→∞ γs−s
′(X � n) =∞. Thus, d′ succeeds on X. J667

Proof of Lemma 23. We know that668

µ(v) = 1
qn(qn + qn−1) and µ(v1) = 1

(qn + qn−1)(2qn + qn−1) ,669

670

since qn+1 = qn + qn−1. It follows that671

µ(v1|v) = qn
2qn + qn−1

<
1
2 .672

673

Moreover,674

µ(v1|v) = qn
(2vn + 1)qn−1 + 2qn−2

>
1

(2vn + 3) ,675

676

since qn−2 < qn−1 < qn. The result follows from Lemma 2. J677

The following lemma states that it is possible to construct martingales which never go to678

0 on any string.679

I Lemma 25. Let d : S → [0,∞) be a martingale (or supermartingale), where S is either Σ∗680

or N∗. Let c ∈ N. Then there is a martingale (respectively, supermartingale) h : S → [0,∞)681

such that h(w) ≥ 2−c for every w ∈ S, where S∞[h] ⊇ S∞[d] and S∞str[h] ⊇ S∞str[d]. If682

d is lower semicomputable (or computable), then h is lower semicomputable (respectively,683

computable).684

Proof. First, let S = Σ∗. For any w ∈ Σ∗, let h(w) = d(w) + 2−c. Then h(w0) + h(w1) is685

d(w0) + d(w1) + 2−c+1. If d is a martingale, then this is 2d(w) + 2−c+1, which is 2h(w).686

Thus h is a martingale. If d is a supermartingale, the above quantity is upper bounded by687

2d(w) + 2−c+1, hence upper bounded by 2h(w). Thus h is a supermartingale. Since h ≥ d, it688

follows that S∞[h] ⊇ S∞[d] and S∞str[h] ⊇ S∞str[d]. Also, since h is obtained by the addition689

of a rational to d, it follows that if d is lower semicomputable (or, computable), then h is690

lower semicomputable (respectively, computable).691

The proof for continued fraction martingales is similar. J692
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I Lemma 26. Let d : Σ∗ → [0,∞) be a martingale, where there is a c ∈ N such that for all693

w ∈ Σ∗, we have d(w) ≥ 2−c. Then the function h : Σ∗ → [0,∞) defined by h = log2(d)+c+1694

is a supermartingale, with S∞[h] ⊇ S∞[d] and S∞str[h] ⊇ S∞str[d]. If d is lower semicomputable695

(or computable), then h is lower semicomputable (respectively, computable).696

Proof. Let d and h be as given. Then 0 < h(λ) = log2(d(λ)) + c + 1 < ∞, since 2−c <697

d(λ) <∞. For every w ∈ Σ∗, h(w) = log2(d(w)) + c+ 1 > 0. Further, we have698

h(w0) + h(w1)
2 = log2 d(w0) + log2 d(w1) + 2c+ 2

2699

≤ log2

[
d(w0) + d(w1)

2

]
+ c+ 1700

= log2 d(w) + c+ 1 = h(w),701
702

by Jensen’s inequality. Hence h is a supermartingale. Since d ≥ 2−c, h is a computable703

real-valued function of d. Hence if d is lower semicomputable (or computable), then h is704

lower semicomputable (respectively computable). J705

I Lemma 27. Let (a, b) be a subinterval of [0, 1] with rational endpoints, and W ⊆ Σ∗ be706

defined by707

W = {w ∈ Σ∗ | Cw ⊆ (a, b),@u @ w u ∈ V }.708
709

Then
∑
w∈W µ(w) = b− a = µ((a, b)).710

I Lemma 28. Let 〈ni〉i∈N be a monotone non-decreasing sequence of positive integers such711

that
∑
i∈N 2−ni < 1

2N <∞. Then
∑
i∈N

ni

2−ni
is upper-bounded by a term computable solely712

from N and which tends to 0 as N →∞ .713

Proof. For every k ∈ N, let fk = 2−nk . Let g1 = 0 and for k ≥ 2, let gk =
∑k−1
j=1 nj .714

For any sequence 〈xk〉k∈N of reals, let the forward difference operator ∆ be defined by715

∆xk = xk+1 − xk, k ∈ N. Then, we have ∆fk = 2−nk+1 − 2−nk and ∆gk = nk. Using716

summation by parts [7], we know that for any m ∈ N,717

m∑
k=1

fk∆gk = fmgm+1 − f1g1 −
m−1∑
k=1

gk∆fk.718

719

Then, we have,720

m∑
k=1

nk
2nk

=
m∑
k=1

fk∆gk721

= gm+1

2nm
− 0−

m−1∑
k=1

k−1∑
j=1

nj

[
1

2nk+1
− 1

2nk

]
.722

723

The last summation term is negative, so the expression is a sum of positive terms. Moreover,724

since gm+1 = O(n2
m), the first term tends to 0 as m → ∞. Taking the limit of the entire725

expression with respect to m, we get2
726

lim
m→∞

m−1∑
k=1

k−1∑
j=1

nj

[
1

2nk
− 1

2nk−1

]
.727

728

2 The limit at this point exists only in [0, ∞] and hence may be ∞.
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If nk = nk−1, then the term 2−nk−2−nk−1 is 0, hence the expression on the right is a positive729

sum involving terms from a a strictly monotone decreasing subsequence 〈nki
〉i∈N, where the730

largest term is necessarily less than or equal to n/2n. Hence the expression on the right is at731

most732

∞∑
k=n

O((k + 1)2)
2k ≤

∞∑
k=n

o(2k/2)
2k =

∞∑
k=n

1
2ωk/2 ≤

1√
2 + 1

1
2 n−1

2
, (6)733

734

which is a term computable in n and which monotone decreases to 0 as n→∞. J735
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