
Theoretical Computer Science 982 (2024) 114251

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Space efficient algorithm for solving reachability using tree

decomposition and separators ✩

Rahul Jain a,∗, Raghunath Tewari b

a Fernuniversität in Hagen, Germany
b Indian Institute of Technology Kanpur, India

A R T I C L E I N F O A B S T R A C T

Communicated by R. Klasing

Keywords:

Graph reachability

Simultaneous time-space upper bound

Tree decomposition

To solve reachability is to determine whether there is a path from one vertex to the other
in a graph. Standard graph traversal algorithms such as DFS and BFS take linear time to
solve reachability; however, their space complexity is also linear. On the other hand, Savitch’s
algorithm takes quasipolynomial time, although the space-bound is 𝑂(log2 𝑛). In this paper, we
study space-efficient algorithms for deciding reachability that runs in polynomial time.

We show a polynomial-time algorithm that solves reachability in directed graphs using 𝑂(𝑤 log 𝑛)
space. Our algorithm requires access to a tree decomposition of width 𝑤 for the underlying
undirected graph of the input. This requirement can be waived for graphs for which recursive
balanced vertex separators can be computed space-efficiently.

1. Introduction

Suppose we have a graph 𝐺 and two vertices 𝑢 and 𝑣 in 𝐺; the reachability problem is the problem of determining if there exists
a path from 𝑢 to 𝑣 in 𝐺. This problem is 𝖭𝖫-complete for directed graphs and Ł-complete for undirected graphs [1]. Hence its study
gives essential insight into space-bounded computations. The famous open question Ł ?

= 𝖭𝖫 essentially asks if there is a deterministic
logspace algorithm for reachability in directed graphs or not. Reachability can be solved in linear space and time using standard
graph traversal algorithms such as DFS and BFS. We also know, due to Savitch, that we can solve it in Θ(log2 𝑛) space [2]. However,
Savitch’s algorithm requires 𝑛Θ(log𝑛) time. Wigderson surveyed reachability problems in which he asked if there is an algorithm for
reachability that runs simultaneously in 𝑂(𝑛1−𝜖) space (for any 𝜖 > 0) and polynomial-time [3]. Here, we make some partial progress
toward answering this question for directed graphs.

In 1998 Barnes et al. made progress in answering Wigderson’s question for general graphs by presenting an algorithm for reach-

ability that runs simultaneously in 𝑛∕2Θ(
√
log𝑛) space and polynomial time [4]. For several other topologically restricted classes of

graphs, there has been significant progress in giving polynomial-time algorithms for reachability that run simultaneously in sublin-

ear space. For grid graphs a space-bound of 𝑂(𝑛1∕2+𝜖) was first achieved [5]. The same space-bound was then extended to all planar
graphs by Imai et al. [6]. Later for planar graphs, the space-bound was improved to �̃�(𝑛1∕2) space by Asano et al. [7]. For graphs
of higher genus, Chakraborty et al. gave an �̃�(𝑛2∕3𝑔1∕3) space algorithm, which additionally requires, as an input, an embedding
of the graph on a surface of genus 𝑔 [8]. They also gave an �̃�(𝑛2∕3) space algorithm for 𝐻 minor-free graphs which requires tree

✩ This article belongs to Section A: Algorithms, automata, complexity and games, Edited by Paul Spirakis.

* Corresponding author.
Available online 18 October 2023
0304-3975/© 2023 Elsevier B.V. All rights reserved.

E-mail addresses: rahul.jain@fernuni-hagen.de (R. Jain), rtewari@cse.iitk.ac.in (R. Tewari).

https://doi.org/10.1016/j.tcs.2023.114251

Received 7 November 2021; Received in revised form 21 July 2023; Accepted 9 October 2023

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:rahul.jain@fernuni-hagen.de
mailto:rtewari@cse.iitk.ac.in
https://doi.org/10.1016/j.tcs.2023.114251
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2023.114251&domain=pdf
https://doi.org/10.1016/j.tcs.2023.114251

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

decomposition of the graph as an input and 𝑂(𝑛1∕2+𝜖) space algorithm for 𝐾3,3-free and 𝐾5-free graphs. For layered planar graphs,
Chakraborty and Tewari showed that for every 𝜖 > 0, there is an 𝑂(𝑛𝜖) space algorithm [9].

Treewidth is a well-studied property of graphs. The value of treewidth can range from 1, for a tree, to 𝑛 − 1, for a complete
graph on 𝑛 vertices. The computational complexity of many difficult problems becomes easy for bounded treewidth graphs. We can
solve classical problems such as the Hamiltonian circuit, vertex cover, Steiner tree, and vertex coloring in linear time for bounded
treewidth graphs [10]. We can solve the weighted independent set problem in 𝑂(2𝑤𝑛) time [11]. It is 𝖭𝖯-complete to find on given
input ⟨𝐺, 𝑘⟩ if 𝐺 has treewidth 𝑘 [12]. However, an 𝑂(

√
log𝑛)-factor approximation algorithm is known [13].

When solving reachability in a directed graph, we consider the treewidth of its underlying undirected graph. Series-parallel graphs
are equivalent to graphs of treewidth 2. For them, Jakoby and Tantau showed a logspace algorithm for reachability [14]. Das et al.
extended the logspace bound to graphs when the input contains a tree decomposition of constant width [15]. Elberfeld et al. showed
a logspace algorithm for any monadic second-order property of a logical structure of bounded treewidth [16].

1.1. Our result

Here, we present a polynomial-time algorithm with improved space-bound for deciding reachability in directed graphs using its
tree decomposition. In particular, we show the following result.

Theorem 1. Given a directed graph 𝐺, a tree decomposition  of 𝐺 of width 𝑤, and two vertices 𝑢 and 𝑣 in 𝐺, there is an 𝑂(𝑤 log𝑛) space
and polynomial-time algorithm that decides if there is a path from 𝑢 to 𝑣 in 𝐺.

Das et al. presented a logspace algorithm to solve reachability in graphs given a tree decomposition of constant width as input
[15]. A simple analysis would show that their algorithm requires Ω(𝑤2 log𝑛) space and 𝑛Ω(𝑤 log𝑤) time.

A constant-size MSO formula can express the graph reachability problem. Hence the result by Elberfeld et al. [16] solves a more
general problem and implies a logspace algorithm for reachability in bounded treewidth graphs. However, the space required by
their algorithm is Ω(𝑝(𝑤) log𝑛) and time required is Ω(𝑛𝑞(𝑤)) where 𝑝 and 𝑞 are super-linear polynomials.

It is worth noting that both the algorithms of Elberfeld et al. [16] and Das et al. [15] cease to run in polynomial time if the
treewidth 𝑤 of the input graph is not a constant. These include a large number of exciting classes of graphs mentioned in the
introduction. Our algorithm requires 𝑂(𝑤 log𝑛) space and 𝑂(𝗉𝗈𝗅𝗒(𝑛, 𝑤)) time. Thus, it has a better time and space complexity for
solving the reachability problem when compared to the results of [16] and [15].

There is a connection between the notion of treewidth and the notion of vertex separators in a graph. We know that if a graph
has treewidth 𝑤, then the graph contains vertex separators of size 𝑤 + 1. To prove Theorem 1, we proceed in the following way:

• We first show that we can construct vertex separators of size 𝑤 + 1 of the input graph in 𝑂(𝑤 log𝑛) space and polynomial time
using the input tree decomposition.

• Using the algorithm for vertex separator as a subroutine, we construct a new binary balanced tree decomposition of 𝐺 having
𝑂(𝑤) width and logarithmic depth.

• We use the new tree decomposition to solve the reachability problem.

To solve the reachability problem in the last step, we use the universal sequences of Asano et al. [7] to determine an appropriate
order to process the vertices of the input graph.

Note that we use the input tree decomposition only to compute vertex separators in the graph. There are several classes of graphs
for which we can recursively find vertex separators of size 𝑂(𝑤) in polynomial-time using 𝑂(𝑤 log𝑛) space. For such classes of graphs,
the method presented here gives a slightly stronger result. We can waive the requirement of additional tree decomposition in the
input for them and still get similar space and time complexity. We state this more formally in Theorem 2.

Theorem 2. Let  be a class of graphs, and 𝑤 be a parameter such that there exists an 𝑂(𝑤 log𝑛) space and polynomial-time algorithm that
given a graph 𝐺 of  and a set 𝑈 of 𝑉 (𝐺), outputs a separator of 𝑈 in 𝐺 of size 𝑤. There exists a polynomial-time algorithm to decide
reachability in  that uses 𝑂(𝑤 log𝑛) space.

1.2. Consequences of our result

Our result has been used to solve the reachability problem in polynomial time with better space complexity for various classes of
graphs without the requirement of tree decomposition in input. For some classes, like constant-genus graphs and chordal graphs, the
requirement of tree decomposition was waived completely. For other classes, like surface-embedded graphs and intersection graphs
of Jordan regions, the requirement of tree decomposition was changed to a weaker requirement.

The intersection graph of a set of 𝑛 Jordan regions with 𝑚 intersection points has a separator of size 𝑂(𝑚1∕2). Given suitably-

encoded Jordan regions as input, it was shown that the separator of its intersection graph could be found in 𝑂(𝑚1∕2 log𝑛) space and
polynomial time [17]. This separator was used with our algorithm to obtain a polynomial-time algorithm to solve the reachability
problem in intersection graphs of Jordan regions using 𝑂(𝑚1∕2 log𝑛) space.

Graphs that have genus 𝑔 have treewidth 𝑂((𝑔𝑛)1∕2). It was shown that given a combinatorial embedding of such a graph, its
2

separator could be found in 𝑂((𝑔𝑛)1∕2 log𝑛) space. This separator algorithm was combined with our algorithm to give a 𝑂((𝑔𝑛)1∕2 log𝑛)

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

space and polynomial-time algorithm for reachability [18]. The requirement for the combinatorial embedding as an input can be
waived for a constant genus graph, as it can be constructed in logspace [19]. Thus, reachability in constant genus graphs can be
solved in 𝑂(𝑛1∕2 log𝑛) space and polynomial time.

A chordal graph on 𝑛 vertices with 𝑚 edges has a separator of size 𝑂(𝑚1∕2) [20]. It was shown that there exists an 𝑂(𝑚1∕2 log𝑛)
space and a polynomial-time algorithm for constructing it [17]. This separator was used with our algorithm to obtain a polynomial-

time algorithm to solve the reachability problem in chordal graphs using 𝑂(𝑚1∕2 log𝑛) space without the input tree decomposition.

Izumi and Otachi [21, Lemma 13] presented a polynomial time algorithm that can compute separator of size 𝑂(𝑤𝑛1∕2) us-

ing 𝑂(𝑤𝑛1∕2 log𝑛)-space for a graph of treewidth 𝑤. We can combine our result with their algorithm to solve reachability using
𝑂(𝑤𝑛1∕2 log𝑛)-space and polynomial time without the input tree decomposition.

Izumi and Otachi [21] also use our reachability algorithm to show construction of a lexicographic Defth First Search sequence of
vertices in a directed graph. Their construction requires 𝑛𝑂(1∕𝜖)-time and 𝑂(𝜖−1𝑤𝑛𝜖 log𝑛)-space

1.3. Organization of the paper

In Section 2, we give the definitions, notations and previously known results that we use in this paper. In Section 3, we show how
to efficiently compute a logarithmic depth binary tree decomposition of 𝐺, which has a similar width to the input tree decomposition.
In Section 4, we give the reachability algorithm and prove its correctness and complexity bounds.

2. Preliminaries

For a graph 𝐺 on 𝑛 vertices, we denote its vertex and edge sets as 𝑉 (𝐺) and 𝐸(𝐺), respectively. Let 𝑊 be a subset of 𝑉 (𝐺). We
denote the subgraph of 𝐺 induced by the vertices in 𝑊 by 𝐺[𝑊]. Let [𝑛] denote the set {1, 2, … , 𝑛} for 𝑛 ≥ 1. We assume that the
vertices of an 𝑛 vertex graph are indexed by integers from 1 to 𝑛.

In a graph 𝐺, a path of length 𝑘 is a sequence of edges 𝑒1, 𝑒2, … , 𝑒𝑘 such that there exist distinct vertices 𝑣1, 𝑣2, … , 𝑣𝑘+1 such that
𝑒𝑖 = (𝑣𝑖, 𝑣𝑖+1) for all 𝑖 in [𝑘]. The vertices 𝑣1 and 𝑣𝑘+1 are the endpoints of this path.

We next define the terminology and notations related to tree decomposition used in this paper. For tree decomposition, we will
treat the graph as an undirected graph by ignoring the direction of its edges.

For a graph 𝐺, a tree decomposition is a tuple  = (𝑇 , ) where 𝑇 is a tree and  is a collection of subsets of 𝑉 (𝐺). Every node
𝑡 of the tree 𝑇 is assigned to an element 𝐵𝑡 of  such that the following conditions hold: (i) ⋃𝑡∈𝑉 (𝑇)𝐵𝑡 = 𝑉 (𝐺), (ii) for every edge
{𝑣, 𝑤} in 𝐸(𝐺), there exists 𝑡 in 𝑉 (𝑇) such that 𝑣 and 𝑤 are in 𝐵𝑡, and (iii) if 𝑡3 is on the path from 𝑡1 to 𝑡2 in 𝑇 , then 𝐵𝑡1

∩𝐵𝑡2
⊆ 𝐵𝑡3

.
The width of a tree decomposition 𝑇 is max𝑡∈𝑉 (𝑇)(|𝐵(𝑡)| − 1). Finally, the treewidth of a graph 𝐺 is the minimum width over all tree
decompositions of 𝐺. We refer to an element 𝑡 of 𝑉 (𝑇) as a node and the set 𝐵𝑡 to be the bag corresponding to 𝑡. For clarity, we will
use the notation 𝐵(𝑡) instead of 𝐵𝑡 in the rest of this article.

We assume that in a binary tree, every node has zero or two children. Moreover, in a balanced tree, all paths from the root to the
leaves have the same length.

The next tool that we would be using is that of separators in graphs. Let 𝜆 be a non-negative weight function on the vertices of 𝐺.
For a set of vertices 𝑈 , we define 𝜆(𝑈) =∑

𝑣∈𝑈 𝜆(𝑣). Let 𝛼 ∈ (0, 1) be a constant. We say that a set 𝑆 of vertices of 𝐺 is an 𝛼-balanced
separator in 𝐺 if for every connected component 𝐶 of 𝐺 ⧵𝑆, we have 𝜆(𝐶) ≤ 𝛼 ⋅ 𝜆(𝑉 (𝐺)).

Let 𝐺 be a graph and 𝑈 be a subset of 𝑉 (𝐺). Consider a weight function which assigns the weight 1 to all the vertices in 𝑈 and 0
to all other vertices of 𝐺. A 12 -balanced separator of 𝐺 under such a weight assignment will be called a separator of 𝑈 in 𝐺.

We state in Lemma 1 the commonly known result about vertex separators. For its proof, see Cygan et al. [22, Lemma 7.19]

Lemma 1. Let 𝐺 be a graph, (𝑇 , ) be a tree decomposition of 𝐺 and 𝜆 be a non-negative weight function on the vertices of 𝐺. There exists
a node 𝑡 of 𝑇 such that the bag 𝐵(𝑡) is 12 -balanced separator in 𝐺.

We use a multi-tape Turing machine model to discuss the space-bounded polynomial-time algorithms. A multi-tape Turing ma-

chine consists of a read-only input tape, a write-only output tape, and a work tape. We measure the space complexity of a multi-tape
Turing machine by the total number of bits used in the work tape.

If we compose two polynomial-time algorithms 𝐴1 and 𝐴2, requiring space 𝑆1(𝑛) and 𝑆2(𝑛) respectively, such that the output
of 𝐴1 is used as an input to 𝐴2, then the total space used in composing 𝐴1 and 𝐴2 is 𝑆(𝑛) = 𝑂(𝑆1(𝑛) + 𝑆2(𝑛)). To see this note that
whenever 𝐴2 queries for an input bit, we simulate 𝐴1 until it yields the desired bit, and we then resume the simulation of 𝐴2. The
total time would remain polynomial as it would be a product of two polynomials.

3. Finding a tree decomposition of small depth

Consider a path from the root of the tree decomposition to an arbitrary leaf. Our main algorithm for reachability (Algorithm 4)
might potentially store reachability information for all vertices corresponding to the bags of tree nodes in this path. We thus require
a tree decomposition with a small depth. This section shows how to compute a binary balanced tree decomposition (say  ′) with
logarithmic depth and width 𝑂(𝑤). Once the depth is reduced to 𝑂(log𝑛) with bag size being 𝑂(𝑤), the algorithm will only need to
store reachability information of 𝑂(𝑤 log𝑛) vertices.
3

Thus, we prove the following Theorem.

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

Theorem 3. Given as input ⟨𝐺,  ⟩ where 𝐺 is a graph and  is a tree decomposition of 𝐺 with width 𝑤, there exists an algorithm working
simultaneously in 𝑂(𝑤 log𝑛) space and polynomial time which outputs a binary tree decomposition  ′ of 𝐺 which has width 6𝑤 +5 and depth
𝑂(log𝑛).

Various algorithms for transforming the input tree decomposition to a binary tree decomposition of small depth are known.
Bodlaender and Hagerup [23] describes how to solve this problem on EREW PRAM model using 𝑂(log 𝑛) time, 𝑂(𝑛) operations and
𝑂(𝑛) space. However, they do not investigate how the complexity of their algorithm is parameterized on 𝑤. EREW PRAM can be
characterized in terms of unambiguous unbounded fan-in, bounded fan-out uniform circuit families [24]. It is not known if such
a circuit family of 𝑂(log𝑛) depth can be simulated in logspace. Chatterjee et al. [25] present an algorithm to compute such a tree
decomposition in 𝑂(𝑏) time, where 𝑏 is the number of bags in the tree decomposition. Their algorithm requires 𝑂(𝑏) space as well.
Since the number of bags can be 𝑂(𝑛), the space required by their algorithm is quite large. Other algorithms [26,27] do not use
an input tree decomposition and try computing a tree decomposition from scratch. It is 𝖭𝖯-complete to compute the treewidth of a
graph, and these algorithms either do not work in polynomial-time for non-constant treewidth or use a heuristic. To the best of our
knowledge, no previous result gives a polynomial-time algorithm which runs space efficiently for classes of graphs with non-constant
treewidth.

We will now develop a framework that will help us to prove Theorem 3. We first show how to compute a 12 -balanced separator
of 𝐺 under any weight assignment in polynomial time and 𝑂(𝑤 log𝑛) space using its tree decomposition  . We cycle through every
node in the tree 𝑇 and store the set of vertices in 𝐵(𝑡). Doing this requires 𝑂(𝑤 log𝑛) space. Then using Reingold’s algorithm [1],
we determine the weight of each of the components of 𝐺[𝑉 (𝐺) ⧵ 𝐵(𝑡)]. By Lemma 1, at least one of these sets 𝐵(𝑡) would act as the
required separator. Its size will be the size of 𝐵(𝑡) for some tree node 𝑡. Hence it can be at most 𝑤 + 1. We summarize this procedure
in Lemma 2.

Lemma 2. Given as input ⟨𝐺,  ⟩ where 𝐺 is a graph,  is a tree decomposition of 𝐺 with width 𝑤, there exists an 𝑂(𝑤 log𝑛) space and
polynomial-time algorithm that computes a 12 -balanced separator of 𝐺 of size at most 𝑤 + 1 under any non-negative weight function on the
vertices of 𝐺.

Let 𝐺 be a graph,  be a tree decomposition of 𝐺, and 𝑈 be a subset of 𝑉 (𝐺). Using Lemma 2, we see that there exists an
algorithm that takes as an input ⟨𝐺,  , 𝑈⟩ and finds a separator of 𝑈 in 𝐺. We will refer to the separator returned by this algorithm
as sep(𝑈).

3.1. Constructing a recursive decomposition

As an intermediate step, we construct a recursive decomposition of the graph, which is a tree whose nodes represent a subgraph
of 𝐺. The root node represents the entire 𝐺. We then remove a separator from it. We assume, inductively, that each connected
component has its recursive decomposition, and we connect the root node to the roots of these recursive decompositions of connected
components. We select a separator such that a small number of bits can encode each node. This recursive decomposition acts as an
intermediate to our tree decomposition. Once we have a recursive decomposition of the graph, we will assign to each node a subset
of 𝐺 such that they would satisfy the properties of tree decomposition.

Definition 1. Let 𝑍 ⊆ 𝑉 (𝐺) and a vertex 𝑟 ∈ (𝑉 (𝐺) ⧵𝑍). Define 𝐺⟨𝑍,𝑟⟩ to be the subgraph of 𝐺 induced by the set of vertices in the
connected component of 𝐺[𝑉 (𝐺) ⧵𝑍] which contains 𝑟. Define the tree rdtree(𝑍, 𝑟) which we call recursive decomposition as follows:

• The root of rdtree(𝑍, 𝑟) is ⟨𝑍, 𝑟⟩.
• Let 𝑍′ = 𝑍 ∪ sep(𝑍) ∪ sep(𝑉 (𝐺⟨𝑍,𝑟⟩)), 𝑘 be the number of connected components of 𝐺[(𝑉 (𝐺⟨𝑍,𝑟⟩) ⧵𝑍′], and let 𝑟1, … , 𝑟𝑘 be the

lowest indexed vertices in each of these connected components. The children of the root are roots of the recursive decompositions
rdtree(𝑍′

𝑖
, 𝑟𝑖) for each 𝑖 ∈ {1, … , 𝑘}, where 𝑍′

𝑖
is the set of vertices in 𝑍′ that are adjacent to at least one vertex of 𝑉 (𝐺⟨𝑍′ ,𝑟𝑖⟩) in

𝐺.

Observe that for the graph 𝐺, the recursive decomposition tree structure has logarithmic depth, and we can encode a node ⟨𝑍, 𝑟⟩
using 𝑂(|𝑍| log𝑛) bits.

Lemma 3. Let 𝑣0 be a vertex in 𝐺. Then the depth of the recursive decomposition rdtree(∅, 𝑣0) is at most log𝑛. Moreover, for a node ⟨𝑍, 𝑟⟩
in rdtree(∅, 𝑣0), we have |𝑍| ≤ 4𝑤 + 4.

Proof. We prove a more general result that for any set of vertices 𝑍 ⊆ 𝑉 (𝐺) and a vertex 𝑟 ∈ (𝑉 (𝐺) ⧵𝑍), the depth of rdtree(𝑍, 𝑟) is
at most log𝑛. Let 𝑍′ be as in Definition 1. By Definition 1, the set sep(𝑉 (𝐺⟨𝑍,𝑟⟩)) is a subset of 𝑍′. Hence removal of 𝑍′ divides the
graph 𝐺⟨𝑍,𝑟⟩ into components, each of which is of size at most half that of the size of 𝐺⟨𝑍,𝑟⟩. Since 𝑟1, … , 𝑟𝑘 are chosen from these
components, it follows that the size of 𝐺⟨𝑍′ ,𝑟𝑖⟩ is at most half of 𝐺⟨𝑍,𝑟⟩. Additionally, in Definition 1 the sets 𝑍′

𝑖
are chosen in such

a manner that the graphs 𝐺⟨𝑍′
𝑖
,𝑟𝑖⟩ and 𝐺⟨𝑍′ ,𝑟𝑖⟩ are equivalent. This proves that the size of the graph 𝐺⟨𝑍,𝑟⟩ halves at each level of the
4

recursive decomposition. Hence rdtree(𝑍, 𝑟) would have at most log𝑛 depth.

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

We prove the second part of the lemma by induction on the depth of the node ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0). This is trivially true for the
root. Now let ⟨𝑍′

𝑖
, 𝑟𝑖⟩ be a child of ⟨𝑍, 𝑟⟩. Let 𝑍𝑖 be the set of vertices of 𝑍 ⧵ sep(𝑍) which are adjacent to at least one of the vertices

of 𝑉 (𝐺⟨𝑍′ ,𝑟𝑖⟩) in 𝐺, and let 𝐶𝑖 be the unique connected component of 𝐺[𝑉 (𝐺) ⧵ sep(𝑍)] whose intersection with 𝐺⟨𝑍′ ,𝑟𝑖⟩ is not empty.
Since sep(𝑍) is a separator of 𝑍 in 𝐺, 𝐶𝑖 will contain at most |𝑍|∕2 vertices of 𝑍. This shows that |𝑍𝑖| ≤ |𝑍|∕2. By Definition 1,
we know that |𝑍′

𝑖
| ≤ |𝑍𝑖| + |sep(𝑍)| + |sep(𝑉 (𝐺⟨𝑍,𝑟⟩))|. The size of sep(𝑉 (𝐺⟨𝑍,𝑟⟩)) ≤𝑤 + 1 and sep(𝑍) ≤𝑤 + 1 by Lemma 2. Lastly by

induction |𝑍|∕2 ≤ (4𝑤 + 4)∕2. Hence it follows that |𝑍′
𝑖
| ≤ 4𝑤 + 4. □

We now show that we can compute the recursive decomposition tree corresponding to 𝐺 efficiently as well. To prove this, we
present procedures to efficiently compute the parent and children of a given node in the recursive decomposition tree.

Algorithm 1: Computes the children of the node ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0).
Input: ⟨𝐺,  , 𝑣0 , 𝑍, 𝑟⟩
Output: Children of the node ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0)

1 Compute sep(𝑍) using Lemma 2

2 Compute sep(𝑉 (𝐺⟨𝑍,𝑟⟩)) using Lemma 2

3 Let 𝑍′ ∶=𝑍 ∪ sep(𝑍) ∪ sep(𝑉 (𝐺⟨𝑍,𝑟⟩))
4 for 𝑣 ∈ 𝑉 (𝐺) do

5 if 𝑣 ∈ 𝑉 (𝐺⟨𝑍,𝑟⟩) and 𝑣 is smallest indexed vertex in 𝐺⟨𝑍′ ,𝑣⟩ then

6 Let 𝑍 ∶= {𝑢 ∈𝑍′ ∣ 𝑢 is adjacent to 𝑉 (𝐺⟨𝑍′ ,𝑣⟩) in 𝐺}
7 Output ⟨𝑍, 𝑣⟩
8 endif

9 endfor

Algorithm 1 outputs the children of ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0). Note that we do not explicitly store 𝑉 (𝐺⟨𝑍,𝑟⟩) but compute it whenever
required. That is, whenever we need to check if a vertex belongs to 𝑉 (𝐺⟨𝑍,𝑟⟩), we check if it is connected to 𝑟 in the underlying
undirected graph of 𝐺 ⧵𝑍 using Reingold’s algorithm. The separators in line 1 and 2 both have cardinality at most 𝑤 + 1 and can be
computed in 𝑂(𝑤 log𝑛) space and polynomial time by Lemma 2. The cardinality of 𝑍 is at most 4𝑤 + 4 by Lemma 3. Therefore |𝑍′|
is at most 6𝑤 + 6. The size of 𝑍 computed is 4𝑤 + 4 by Lemma 3. Thus the space required by Algorithm 1 is 𝑂(𝑤 log𝑛).

Algorithm 2: Computes the parent of the node ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0).
Input: ⟨𝐺,  , 𝑣0 , 𝑍, 𝑟⟩
Output: parent of the node ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0)

1 Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∶= ⟨∅, 𝑣0⟩
2 while ⟨𝑍, 𝑟⟩ is not a child of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 do

3 Let ⟨𝑍′ , 𝑟′⟩ be the child of 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 such that 𝐺⟨𝑍′ ,𝑟′⟩ contains 𝑟
4 Set 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ∶= ⟨𝑍′ , 𝑟′⟩
5 end

6 Output 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Algorithm 2 outputs the parent of ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0). It uses Algorithm 1 as a subroutine to get the children of a node in
rdtree(∅, 𝑣0). Hence we can traverse the tree rdtree(∅, 𝑣0) in 𝑂(𝑤 log𝑛) space and polynomial time. We summarize the above in
Lemma 4.

Lemma 4. Let 𝐺 be a graph,  be a tree decomposition of 𝐺 with width 𝑤 and 𝑣0 be a vertex in 𝐺. Given ⟨𝐺,  , 𝑣0⟩ and the node ⟨𝑍, 𝑟⟩ in
rdtree(∅, 𝑣0), there exist algorithms that use 𝑂(𝑤 log𝑛) space and polynomial time, and output the children and parent of ⟨𝑍, 𝑟⟩ respectively.
As a consequence rdtree(∅, 𝑣0) can be traversed in 𝑂(𝑤 log𝑛) space and polynomial time as well.

3.2. Constructing a new tree decomposition

We now construct a new tree decomposition of 𝐺 from the recursive decomposition defined earlier. The new tree decomposition
will have the same tree structure as the recursive decomposition. We will assign to each node of this tree a subset of vertices of
G. The subgraph that a node of the recursive decomposition represents is a connected component obtained after removing a set of
separators from 𝐺. The assigned subset for the corresponding node in the tree decomposition is simply the set of separator vertices
in the boundary of this subgraph together with the separator required to subdivide this subgraph further. We formalize this in
Definition 2.

Definition 2. Let 𝑇 be the tree corresponding to the recursive decomposition rdtree(∅, 𝑣0). For a node ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0), we
define 𝐵(⟨𝑍, 𝑟⟩) as 𝐵(⟨𝑍, 𝑟⟩) ∶=𝑍 ∪ ((sep(𝑉 (𝐺⟨𝑍,𝑟⟩)) ∪ sep(𝑍)) ∩ 𝑉 (𝐺⟨𝑍,𝑟⟩)). Moreover, we define ̂ as ̂ ∶= {𝐵(⟨𝑍, 𝑟⟩) ∣ ⟨𝑍, 𝑟⟩ is a node
in rdtree(∅, 𝑣0)}
5

We first show that ⟨𝑇 , ̂⟩ is a tree decomposition of 𝐺.

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

Lemma 5. ⟨𝑇 , ̂⟩ is a tree decomposition of 𝐺 of width 6𝑤 + 5. Moreover, the depth of 𝑇 is at most log𝑛.

Proof. We claim that for a node 𝑣 in 𝐺⟨𝑍,𝑟⟩, there exists a vertex ⟨𝑍′, 𝑟′⟩ in rdtree(𝑍, 𝑟) such that 𝐵(⟨𝑍′, 𝑟′⟩) contains 𝑣. We prove this
by induction on the depth of the recursive decomposition rdtree(𝑍, 𝑟). If rdtree(𝑍, 𝑟) is just a single node, then 𝑣 is in sep(𝑉 (𝐺⟨𝑍,𝑟⟩))
by construction. Otherwise 𝑣 is either in (sep(𝑍) ∪ sep(𝑉 (𝐺⟨𝑍,𝑟⟩))) or in one of the connected components of 𝐺[𝑉 (𝐺⟨𝑍,𝑟⟩) ⧵ (sep(𝑍) ∪
sep(𝑉 (𝐺⟨𝑍,𝑟⟩)))]. If 𝑣 is in (sep(𝑍) ∪ sep(𝑉 (𝐺⟨𝑍,𝑟⟩))), then 𝑣 is in 𝐵(⟨𝑍, 𝑟⟩) and we are done. Otherwise one of the children of ⟨𝑍, 𝑟⟩
will be ⟨�̃�, ̃𝑟⟩ such that 𝑣 is in 𝐺⟨�̃�,𝑟⟩. Now by induction hypothesis, there exists a vertex ⟨𝑍′, 𝑟′⟩ in rdtree(�̃�, ̃𝑟) such that 𝐵(⟨𝑍′, 𝑟′⟩)
contains 𝑣. It follows that the first property of tree decomposition is satisfied.

We claim that for any edge (𝑢, 𝑣) in 𝐺 such that {𝑢, 𝑣} ⊆ 𝑉 (𝐺⟨𝑍,𝑟⟩) ∪𝑍, either both 𝑢 and 𝑣 are in 𝐵(⟨𝑍, 𝑟⟩) or there exists a child ⟨𝑍′
𝑖
, 𝑟𝑖⟩ of ⟨𝑍, 𝑟⟩ such that {𝑢, 𝑣} ⊆ 𝑉 (𝐺⟨𝑍′

𝑖
,𝑟𝑖⟩) ∪𝑍′

𝑖
. Since 𝑢 and 𝑣 are connected by an edge, there cannot exist any set of vertices 𝑍

such that 𝑢 and 𝑣 are in different connected components of 𝐺[𝑉 (𝐺) ⧵𝑍]. Let 𝑍′ =𝑍 ∪ sep(𝑍) ∪ sep(𝑉 (𝐺⟨𝑍,𝑟⟩)). If both 𝑢 and 𝑣 are in
𝑍′, then they are in 𝐵(⟨𝑍, 𝑟⟩). Otherwise, let 𝑟𝑖 be the lowest indexed vertex in the connected component of 𝐺[(𝑉 (𝐺⟨𝑍,𝑟⟩) ⧵𝑍′] which
contains either of 𝑢 or 𝑣. Let 𝑍′

𝑖
be the set of vertices in 𝑍′ that are adjacent to at least one of the vertices of 𝑉 (𝐺⟨𝑍′ ,𝑟𝑖⟩) in 𝐺. Now,

if both 𝑢 and 𝑣 are not in 𝑉 (𝐺⟨𝑍′
𝑖
,𝑟𝑖⟩), then one of them has to be in 𝑍′

𝑖
. Hence in all cases, 𝑢 and 𝑣 are contained in 𝑉 (𝐺⟨𝑍′

𝑖
,𝑟𝑖⟩) ∪𝑍′

𝑖
.

Hence by induction on the depth of the tree decomposition 𝑇 we have that there exists a node in 𝑇 whose bag contains both 𝑢 and
𝑣, satisfying the second property of tree decomposition.

To establish the third property of tree decomposition we first show that if 𝑣 is not in 𝑍 ∪ 𝑉 (𝐺⟨𝑍,𝑟⟩), then for no descendant ⟨�̃�, ̃𝑟⟩
of ⟨𝑍, 𝑟⟩ will 𝐵(⟨�̃�, ̃𝑟⟩) contain 𝑣. We show this by induction on the depth of the recursive decomposition. If there is only one node
in rdtree(𝑍, 𝑟), then 𝐵(⟨𝑍, 𝑟⟩) does not contain 𝑣 by definition. Otherwise, no connected component of 𝐺[𝑉 (𝐺⟨𝑍,𝑟⟩) ⧵𝑍′] contains 𝑣.
Also, 𝑍′

𝑖
for any of its children will not contain 𝑣 as claimed.

Now let ⟨𝑍, 𝑟⟩ be a node in 𝑇 . We claim that for any child ⟨𝑍′
𝑖
, 𝑟𝑖⟩ of ⟨𝑍, 𝑟⟩ if a vertex 𝑣 is in 𝐵(⟨𝑍, 𝑟⟩), then either 𝑣 is also in

𝐵(⟨𝑍′
𝑖
, 𝑟𝑖⟩) or no descendant of ⟨𝑍′

𝑖
, 𝑟𝑖⟩ has a bag corresponding to it which contains 𝑣. Since any connected component of 𝐺[𝑉 (𝐺⟨𝑍,𝑟⟩) ⧵

𝐵(⟨𝑍, 𝑟⟩)] cannot contain 𝑣, 𝑣 is not in 𝑉 (𝐺⟨𝑍′
𝑖
,𝑟𝑖⟩) for any child ⟨𝑍′

𝑖
, 𝑟𝑖⟩ of ⟨𝑍, 𝑟⟩. Now if 𝑣 is not in 𝐵(⟨𝑍′

𝑖
, 𝑟𝑖⟩), then it implies that 𝑣 is

not in 𝑍′
𝑖
∪ 𝑉 (𝐺⟨𝑍′

𝑖
,𝑟𝑖⟩) as well. Hence the third property of tree decomposition is satisfied as well.

For a vertex ⟨𝑍, 𝑟⟩ in rdtree(∅, 𝑣0), we have |𝑍| ≤ 4𝑤 + 4, sep(𝑍) ≤ 𝑤 + 1 and sep((𝑉 (𝐺⟨𝑍,𝑟⟩)) ≤ 𝑤 + 1 as well. Hence 𝐵(⟨𝑍, 𝑟⟩) ≤
6𝑤 + 6.

Since the tree 𝑇 and rdtree(∅, 𝑣0) have the same structure, the bounds on their depths are the same. □

Next, we observe that given ⟨𝑍, 𝑟⟩, we can compute 𝐵(⟨𝑍, 𝑟⟩) in 𝑂(𝑤 log𝑛) space and polynomial time. Hence we have the
following lemma.

Lemma 6. Given a graph 𝐺 and a tree decomposition  of 𝐺 with width 𝑤, there is an algorithm that can compute a new tree decomposition
̂ = ⟨𝑇 , ̂⟩ of 𝐺 having width at most 6𝑤 + 5 and depth at most log𝑛, using 𝑂(𝑤 log𝑛) space and polynomial time. Moreover, the tree 𝑇 can
be traversed in 𝑂(𝑤 log𝑛) space and polynomial time as well.

Note that the tree 𝑇 might not be a binary tree since a separator might disconnect the graph into more than two components.
However, to decide reachability in the latter part of this paper, we require the tree decomposition to have a bounded degree as well.
We achieve this by using the following Lemma from Elberfeld et al. to get the required tree decomposition  ′.

Lemma 7. [16] Let 𝐺 be a graph and  be a tree decomposition of 𝐺 with logarithmic depth. There exists a logspace algorithm that takes 
as an input and outputs a logarithmic depth, binary balanced tree decomposition of 𝐺 having the same width.

Now combining Lemma 6 and Lemma 7 we get the proof of Theorem 3.

We observe that the input tree decomposition  is used only to compute a vertex separator in 𝐺. For those classes of graphs in
which a vertex separator can be constructed in a space-efficient manner, we can use their separator algorithms as subroutines instead
of the algorithm of Lemma 2 in lines 1 and 2 of the Algorithm 1. We thus get the following theorem.

Theorem 4. Let  be a class of graphs such that there exists an 𝑂(𝑠(𝑛)) space and polynomial-time algorithm that given a graph 𝐺 of  and
a set 𝑈 of 𝑉 (𝐺), outputs a separator of 𝑈 in 𝐺 of size 𝑓 (𝑛). There exists an algorithm working simultaneously in 𝑂(𝑠(𝑛) + 𝑓 (𝑛) log𝑛) space
and polynomial time which outputs a binary balanced tree decomposition  ′ of 𝐺 which has width 𝑂(𝑓 (𝑛)) and depth 𝑂(log𝑛)

Theorem 4 can be of independent interest. Izumi and Otachi [21, Lemma 13], for example, showed that there exists a polynomial-

time algorithm that takes as an input a graph 𝐺 and an integer 𝑘 and either outputs a separator of size 𝑂(𝑤𝑛1∕2) or decides that the
treewidth of 𝐺 is more than 𝑤. We can combine 4 with their result to get the following corollary.

Corollary 1. There exists an algorithm that takes as an input an 𝑛-vertex graph 𝐺 and 𝑤 ≤ 𝑛1∕2 and either outputs a tree decomposition of
width 𝑂(𝑤𝑛1∕2) or correctly decides that the treewidth of 𝐺 is more than 𝑤. This algorithm runs in a polynomial time and uses 𝑂(𝑤𝑛1∕2𝑙𝑜𝑔𝑛)-
6

bit space.

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

Table 1

Universal sequence 𝜎𝑠 for various values of 𝑠.
𝑠 𝜎𝑠

0 ⟨1⟩
1 ⟨1,2,1⟩
2 ⟨1,2,1,4,1,2,1⟩
3 ⟨1,2,1,4,1,2,1,8,1,2,1,4,1,2,1⟩
4 ⟨1,2,1,4,1,2,1,8,1,2,1,4,1,2,1,16,1,2,1,4,1,2,1,8,1,2,1,4,1,2,1⟩

Thus our results can be used to slightly improve the results of Izumi and Otachi [cf. 21, Theorem 2 and Lemma 14].

4. Deciding reachability using a binary balanced tree decomposition

In this section, we show that there exists a polynomial-time algorithm that uses 𝑂(𝑤 log𝑛) space to decide reachability in 𝐺. This
algorithm also requires a binary balanced tree decomposition  whose depth is 𝑂(log𝑛) as part of the input. In particular, we show
the following Theorem.

Theorem 5. Given ⟨𝐺,  , 𝑢, 𝑣⟩ as input, where 𝐺 is a graph on 𝑛 vertices, 𝑢 and 𝑣 are two vertices of 𝐺, and  is a binary balanced
tree decomposition of 𝐺 having depth ℎ and width 𝑤, there exists an 𝑂(𝑤ℎ + log𝑛) space and 𝑂(𝗉𝗈𝗅𝗒(2ℎ, 𝑤, 𝑛)) time algorithm that solves
reachability in 𝐺.

We first state the notation required to prove Theorem 5. This notation is commonly used to describe dynamic programming
algorithms which use tree decomposition. Let 𝑇 be a rooted binary tree. We denote root(𝑇) to be the root of 𝑇 and for a node 𝑡 ∈ 𝑇 ,
we denote left(𝑡) and right(𝑡) to be the left and right child of 𝑡 respectively (the value is NULL if a child does not exist). For two
nodes 𝑡 and 𝑡′ in 𝑇 , if 𝑡′ lies in the path from root(𝑇) to 𝑡, then we say that 𝑡′ is an ancestor of 𝑡 and 𝑡 is a descendant of 𝑡′. Note
that each node is also its own ancestor and descendant. For a node 𝑡, let 𝐵𝑒(𝑡) denote the set of edges of 𝐺 whose both endpoints
are in 𝐵(𝑡). We define a subgraph of 𝐺 with respect to the node 𝑡 consisting of the ancestor vertices of 𝑡. Formally, the vertex set
is 𝑉 anc

𝑡 =
⋃

{𝑡′ is an ancestor of 𝑡}𝐵(𝑡′), and the edge set is 𝐸anc
𝑡 =

⋃
{𝑡′ is an ancestor of 𝑡}𝐵𝑒(𝑡′) and the graph 𝐺anc

𝑡 = (𝑉 anc
𝑡 , 𝐸anc

𝑡). Now, we
define a subgraph of 𝐺 with respect to the node 𝑡 consisting of the ancestor as well as descendant vertices of 𝑡. Formally, the vertex
set is 𝑉𝑡 =

⋃
{𝑡′ is an ancestor or descendant of 𝑡}𝐵(𝑡′), the edge set is 𝐸𝑡 =

⋃
{𝑡′ is an ancestor or descendant of 𝑡}𝐵𝑒(𝑡′) and the graph 𝐺𝑡 = (𝑉𝑡, 𝐸𝑡).

We assume that the vertices 𝑢 and 𝑣 are in root(𝑇). Otherwise, we can add them to all of the bags of the given tree decomposition.
Also, we assume that 𝑛 is a power of 2. Otherwise, we simply add dummy vertices to the graph. This addition does not affect the
asymptotic bounds we wish to prove and makes the explanation simpler.

We now explain our reachability algorithm. For a node 𝑡 in the tree decomposition  consider the graph 𝐺𝑡. Let 𝑃 be a path of
length 𝑑 from a vertex of 𝑉 anc

𝑡 to another (assume without loss of generality that 𝑑 is a power of 2). We define a sequence of leaves
SEQ𝑡,𝑑 of 𝑇 (see Section 4.1). Each leaf 𝑓 in this sequence corresponds to a set of at most 𝑤ℎ vertices 𝑉𝑓 . Now subdivide the path 𝑃
into subpaths 𝑃1, 𝑃2, … , 𝑃𝑘 such that each 𝑃𝑖 completely lies either in 𝐺left(𝑡) or in 𝐺right(𝑡). We now use the sequence SEQ𝑡,𝑑 to give
an iterative procedure to combine the results of the subpaths 𝑃𝑖 ’s to determine the path 𝑃 . In Algorithm 4, we show how to use the
sequence SEQ𝑡,𝑑 to simulate the described method. We show in Lemma 11 that processing SEQ𝑡,𝑑 is sufficient to determine a path
of length at most 𝑑 between two vertices in the graph 𝐺𝑡.

4.1. Constructing the sequence SEQ𝑡,𝑑

We will be using 𝑢𝑛𝑖𝑣𝑒𝑟𝑠𝑎𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠 and the following lemma about it from Asano et al. to construct the sequence of leaves (see
Table 1).

For every integer 𝑠 ≥ 0, a universal sequence 𝜎𝑠 of length 2𝑠+1 − 1 is defined as follows:

𝜎𝑠 =

{⟨1⟩ 𝑠 = 0
𝜎𝑠−1 ⋄ ⟨2𝑠⟩ ⋄ 𝜎𝑠−1 𝑠 > 0

where ⋄ is the concatenation operation.

Lemma 8. [7] The universal sequence 𝜎𝑠 satisfies the following properties:

- Let 𝜎𝑠 = ⟨𝑐1, … , 𝑐2𝑠+1−1⟩. Then for any positive integer sequence ⟨𝑑1, … , 𝑑𝑥⟩ such that Σ𝑑𝑖 ≤ 2𝑠, there exists a subsequence ⟨𝑐𝑖1 , … , 𝑐𝑖𝑥⟩
such that 𝑑𝑗 ≤ 𝑐𝑖𝑗 for all 𝑗 ∈ [𝑥].

- The sequence 𝜎𝑠 contains exactly 2𝑠−𝑖 appearances of the integer 2𝑖 and nothing else.
- The sequence 𝜎𝑠 is computable in 𝑂(2𝑠) time and 𝑂(𝑠) space.

Definition 3. Let 𝑇 be a binary balanced tree. Let 𝑡 be a node in 𝑇 and 𝑑 be a positive power of 2. We define a sequence SEQ𝑡,𝑑
7

consisting of leaves of 𝑇 in the following way: If 𝑡 is not a leaf, then SEQ𝑡,𝑑 = SEQleft(𝑡),𝑐1 ⋄ SEQright(𝑡),𝑐1 ⋄ SEQleft(𝑡),𝑐2 ⋄ SEQright(𝑡),𝑐2 ⋄

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

⋯ ⋄SEQright(𝑡),𝑐2𝑑−1 where 𝑐𝑖 is the 𝑖-th integer in 𝜎log𝑑 . Otherwise, if 𝑡 is a leaf, SEQ𝑡,𝑑 is ⟨𝑡⟩ concatenated with itself 𝑑 times. We also
define SEQ𝑡,𝑑 (𝑟) to be the leaf at the index 𝑟 in the sequence SEQ𝑡,𝑑 . The length of SEQ𝑡,𝑑 is the number of leaves in SEQ𝑡,𝑑 .

We show in Algorithm 3 how to construct the sequence SEQroot(𝑇),𝑑 in 𝑂(ℎ + log𝑑) space. In Lemma 9, we give a closed form
expression for the length of the sequence.

Algorithm to compute SEQ𝑡,𝑑

Algorithm 3: Computes the 𝑟-th element of the sequence SEQ𝑡,𝑑 .

Input: ⟨𝑡, 𝑑, 𝑟⟩
1 while 𝑡 is not a leaf do

2 Let 𝑚 be the depth of the subtree of 𝑇 rooted at 𝑡
3 Let 𝑖∗ be the smallest integer such that (𝑟 − 2 ∑𝑖∗

𝑖=1 𝐿(𝑚∕2, 𝑐𝑖)) ≤ 0 where 𝑐𝑖 is the 𝑖’th integer in the sequence 𝜎log𝑑
4 if 𝑟 − 2 ∑𝑖∗−1

𝑖=1 𝐿(𝑚∕2, 𝑐𝑖) −𝐿(𝑚∕2, 𝑐𝑖∗) ≤ 0 then

5 𝑟 ← 𝑟 − 2 ∑𝑖∗−1
𝑖=1 𝐿(𝑚∕2, 𝑐𝑖)

6 𝑡 ← left(𝑡)
7 else

8 𝑟 ← 𝑟 − 2 ∑𝑖∗−1
𝑖=1 𝐿(𝑚∕2, 𝑐𝑖) −𝐿(𝑚∕2, 𝑐𝑖∗)

9 𝑡 ← right(𝑡)
10 endif

11 𝑑 ← 𝑐𝑖∗

12 end

13 return 𝑡

Lemma 9. Let 𝑇 be a binary balanced tree. Let 𝑡 be a node in 𝑇 , 𝑑 be a positive power of 2 and ℎ be the depth of subtree of 𝑇 rooted at 𝑡.
Then, the length of sequence SEQ𝑡,𝑑 is 2ℎ𝑑

(ℎ+log𝑑
log𝑑

)
.

Proof. Let 𝐿(ℎ, 𝑑) be the length of the sequence SEQ𝑡,𝑑 . By definition of SEQ𝑡,𝑑 , we have

𝐿(ℎ,𝑑) =

{
2
∑

𝑐∈𝜎log𝑑 𝐿(ℎ− 1, 𝑐) ℎ > 0

𝑑 ℎ = 0

From Lemma 8, we get that 𝜎log𝑑 contains exactly 𝑑

2𝑖 occurrences of the integer 2𝑖. Thus we have:

𝐿(ℎ,𝑑) =

{∑log𝑑
𝑖=0

𝑑

2𝑖−1 𝐿(ℎ− 1,2𝑖) ℎ > 0
𝑑 ℎ = 0

We claim that 𝐿(ℎ, 𝑑) = 2ℎ𝑑
(ℎ+log𝑑

log𝑑

)
and we prove this by induction on ℎ. For ℎ = 0, we see that

2ℎ𝑑
(
ℎ+ log𝑑
log𝑑

)
= 𝑑

(
log𝑑
log𝑑

)
= 𝑑

Now, we assume the statement to be true for smaller values of ℎ. We see that:

𝐿(ℎ,𝑑) =
log𝑑∑
𝑖=0

𝑑

2𝑖−1
𝐿(ℎ− 1,2𝑖)

𝐿(ℎ,𝑑) =
log𝑑∑
𝑖=0

𝑑

2𝑖−1
2ℎ−12𝑖

(
ℎ+ 𝑖− 1

𝑖

)

𝐿(ℎ,𝑑) = 2ℎ𝑑
log𝑑∑
𝑖=0

(
ℎ+ 𝑖− 1

𝑖

)
using

(𝑎
𝑟

)
=
(𝑎+1

𝑟

)
−
(𝑎

𝑟−1

)
𝐿(ℎ,𝑑) = 2ℎ𝑑

log𝑑∑
𝑖=0

(
(
ℎ+ 𝑖

𝑖

)
−
(
ℎ+ 𝑖− 1
𝑖− 1

)
)

(
ℎ+ log𝑑

)

8

𝐿(ℎ,𝑑) = 2ℎ𝑑
log𝑑

□

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

Lemma 10. Let 𝑇 be a binary balanced tree of depth at most ℎ. Let 𝑡 be a node of 𝑇 and 𝑑 be a power of 2. The sequence SEQ𝑡,𝑑 can be
constructed in space 𝑂(ℎ + log𝑑).

Proof. We see that 𝐿(𝑚, 𝑑) is bounded by a polynomial in 𝑚 and 𝑑. For a given integer 𝑟, let 𝑖∗ be the smallest integer such that
𝑟 − 2 ∑𝑖∗

𝑖=1𝐿(𝑚∕2, 𝑐𝑖) ≤ 0. By the definition, SEQ𝑡,𝑑 (𝑟) = SEQleft(𝑡),𝑐𝑖∗ (𝑟 − 2 ∑𝑖∗−1
𝑖=1 𝐿(𝑚∕2, 𝑐𝑖)) if 𝑟 − 2 ∑𝑖∗−1

𝑖=1 𝐿(𝑚∕2, 𝑐𝑖) −𝐿(𝑚∕2, 𝑐𝑖∗) ≤ 0 and
SEQ𝑡,𝑑 (𝑟) = SEQright(𝑡),𝑐𝑖∗ (𝑟 − 2 ∑𝑖∗−1

𝑖=1 𝐿(𝑚∕2, 𝑐𝑖) −𝐿(𝑚∕2, 𝑐𝑖∗)) otherwise.

The length of the sequence SEQ𝑡,𝑑 is at most 2ℎ𝑑
(ℎ+log𝑑

log𝑑

)
. Hence the number of bits required to store any index of the sequence is

at most log(2ℎ𝑑
(ℎ+log𝑑

log𝑑

)
) =𝑂(ℎ + log𝑑). This gives the space-bound of Algorithm 3. □

4.2. Algorithm to solve reachability

Algorithm 4: Reach(𝐺,  , 𝑢, 𝑣).

Input: ⟨𝐺,  , 𝑢, 𝑣⟩
1 Let 𝑅0 be and 𝑅1 be two 𝑤ℎ bit-vectors

2 Initialize 𝑡0 and 𝑡1 by two arbitrary leaves of 𝑇
3 Initialize all the bits of 𝑅0 with 0 and mark 𝑢 (by setting the bit at position pos𝑡0

(𝑢) to 1)

4 for every leaf 𝑓 in SEQroot(𝑇),𝑛 in order do

5 Let 𝑖 be the iteration number

6 Reset all the bits of 𝑅𝑖 mod 2 to 0
7 Let 𝑡𝑖 mod 2 ← 𝑓

8 for all 𝑥 marked in 𝑅(𝑖−1) mod 2 and all 𝑦 in 𝑉𝑓 do

9 if (x, y) is an edge in 𝐺 OR 𝑥 = 𝑦 then

10 Mark 𝑦 in 𝑅𝑖 mod 2 (by setting the bit at position pos𝑡𝑖 mod 2
(𝑦) to 1)

11 endif

12 endfor

13 endfor

14 If 𝑣 is marked return 1; otherwise return 0.

Let 𝐺 be a graph and  = ⟨𝑇 , ⟩ be a binary balanced tree decomposition of 𝐺. For a leaf 𝑡 of 𝑇 and a vertex 𝑣 of 𝐺 we use pos𝑡(𝑣)
for the position of 𝑣 in an arbitrarily fixed ordering of the vertices of 𝐺𝑡. This position can be found in logspace. For example, consider
the vertices ordered by their indices in ascending order. For this ordering, pos𝑡(𝑣) can be found by cycling through all vertices and
counting the number of vertices in 𝐺𝑡 whose index is less than that of 𝑣.

Lemma 11. Let 𝐺 be a graph and  = ⟨𝑇 , ⟩ be a binary balanced tree decomposition of 𝐺 of width 𝑤 and depth ℎ. Let 𝑡 be a node of 𝑇
and 𝑑 be a power of 2. For each vertex 𝑦 ∈ 𝑉 anc

𝑡 , 𝑦 is marked after the execution of iterations in lines 4 to 13 of Algorithm 4 with values of
𝑓 in SEQ𝑡,𝑑 if there is a marked vertex 𝑥 in 𝑉 anc

𝑡 and a path from 𝑥 to 𝑦 in 𝐺𝑡 of length at most 𝑑.

Proof. We prove this by induction on the depth of subtree rooted at 𝑡. The base case is trivial. Let 𝑝 be the path of length at most
𝑑 from 𝑥 to 𝑦 such that 𝑥 is marked and 𝑥, 𝑦 is in 𝑉 anc

𝑡 . We see that the edges of path 𝑝 will belong to either 𝐸left(𝑡) or 𝐸right(𝑡) (or
both). We label an edge of 𝑝 as 0 if it belongs to 𝐸left(𝑡), else label it as 1. Break down 𝑝 into subpaths 𝑝1, … , 𝑝𝑘 such that the edges
in 𝑝𝑖 are all labeled with the same value and label of edges in 𝑝𝑖+1 is different from label of 𝑝𝑖. The endpoints 𝑦𝑖 of these subpaths
will belong to 𝑉 anc

𝑡 , for otherwise, 𝑦𝑖 will not be in 𝐵(𝑡) but since 𝑦𝑖 has edges of both labels incident on it, it will be in bags of both
subtrees rooted at left(𝑡) and right(𝑡) contradicting the third property of tree decompositions. Let 𝑙𝑖 be the length of path 𝑝𝑖. Since
𝑙1 + 𝑙2 +⋯ + 𝑙𝑘 ≤ 𝑑, by Lemma 8, there exists a subsequence ⟨𝑐𝑖1 , 𝑐𝑖2 , … , 𝑐𝑖𝑘⟩ of 𝜎log𝑑 such that 𝑙𝑗 ≤ 𝑐𝑖𝑗 .

Consider the subsequence SEQleft(𝑡),𝑐𝑖1
⋄ SEQright(𝑡),𝑐𝑖1

⋄ SEQleft(𝑡),𝑐𝑖2
⋄ SEQright(𝑡),𝑐𝑖2

⋄ SEQleft(𝑡),𝑐𝑖3
⋄ SEQright(𝑡),𝑐𝑖3

⋄ ⋯ ⋄ SEQleft(𝑡),𝑐𝑖𝑘
⋄

SEQright(𝑡),𝑐𝑖𝑘
of SEQ𝑡,𝑑 . We claim that 𝑦𝑗 is marked after the iterations with the value of 𝑓 in SEQleft(𝑡),𝑐𝑖𝑗

⋄ SEQright(𝑡),𝑐𝑖𝑗
. Since 𝑦𝑗−1

is marked before the iterations and the path 𝑝𝑗 is either the subgraph 𝐺left(𝑡) or 𝐺right(𝑡) having length at most 𝑐𝑖𝑗 , 𝑦𝑗 will be marked
by induction hypothesis. We see that any vertex present in 𝑉 𝑎𝑛𝑐

𝑡 is present in 𝐺𝑡′ for all leaves 𝑡′ that is present in SEQ𝑡,𝑑 . Therefore,
once such a vertex is marked, it remains marked for the rest of these iterations. Hence, 𝑦𝑗 is marked before the iterations with the
value of 𝑓 in SEQleft(𝑡),𝑐𝑖𝑗+1

⋄ SEQright(𝑡),𝑐𝑖𝑗+1
□

Lemma 12. On input of a graph 𝐺 with 𝑛 vertices and its binary balanced tree decomposition  = ⟨𝑇 , ⟩ with width 𝑤 and depth ℎ;
Algorithm 4 solves reachability in 𝐺 and requires 𝑂(𝑤ℎ + log𝑛) space and time polynomial in 2ℎ, 𝑛 and 𝑤.

Proof. Algorithm 4 marks a vertex only if it is reachable from 𝑢. The proof of correctness of the algorithm follows from Lemma 11

and the fact that 𝑢 and 𝑣 are both present in 𝐵(root(𝑇)) and 𝑢 is marked before the first iteration of the for-loop in line 4.

We first analyze the space required. The size of bit-vectors 𝑅0 and 𝑅1 is 𝑤ℎ. 𝑡0 and 𝑡1 are indices of nodes of 𝑇 . The space required
to store the index of a vertex of 𝑇 is 𝑂(ℎ). Space required to store a vertex of 𝐺 is 𝑂(log𝑛), and pos𝑡(𝑥) for a node 𝑡 and a vertex 𝑥
9

can be found in 𝑂(log𝑛 + ℎ) space. Hence the total space required is 𝑂(𝑤ℎ + log𝑛).

Theoretical Computer Science 982 (2024) 114251R. Jain and R. Tewari

We now analyze the time-bound. By Lemma 9, the size of SEQ𝑡,𝑑 is polynomial in 2ℎ and 𝑑, the number of iterations in the for-loop
of line 4 is thus a polynomial. The other lines do trivial stuff, and hence, the total running time of the algorithm is polynomial. □

Theorem 5 follows from Lemma 12. Combining Theorem 5 and Theorem 3 we get the proof of Theorem 1. Similarly, combining
Theorem 5 and Theorem 4 we get the proof of Theorem 2.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

References

[1] O. Reingold, Undirected connectivity in log-space, J. ACM 55 (4) (2008) 17.

[2] W.J. Savitch, Relationships between nondeterministic and deterministic tape complexities, J. Comput. Syst. Sci. 4 (2) (1970) 177–192.

[3] A. Wigderson, The complexity of graph connectivity, in: Proceedings of the 17th International Symposium on Mathematical Foundations of Computer Science
(MFCS 1992), Springer, 1992, pp. 112–132.

[4] G. Barnes, J.F. Buss, W.L. Ruzzo, B. Schieber, A sublinear space, polynomial time algorithm for directed s-t connectivity, SIAM J. Comput. 27 (5) (1998)
1273–1282.

[5] T. Asano, B. Doerr, Memory-constrained algorithms for shortest path problem, in: Proceedings of the 23rd Annual Canadian Conference on Computational
Geometry (CCCG 2011), 2011.

[6] T. Imai, K. Nakagawa, A. Pavan, N.V. Vinodchandran, O. Watanabe, An 𝑂(𝑛
1
2 +𝜖)-space and polynomial-time algorithm for directed planar reachability, in:

Proceedings of the 28th Conference on Computational Complexity, CCC 2013, 2013, pp. 277–286.

[7] T. Asano, D. Kirkpatrick, K. Nakagawa, O. Watanabe, �̃�(
√
𝑛)-space and polynomial-time algorithm for planar directed graph reachability, in: Proceedings of the

39th International Symposium on Mathematical Foundations of Computer Science (MFCS 2014), 2014, pp. 45–56.

[8] D. Chakraborty, A. Pavan, R. Tewari, N.V. Vinodchandran, L.F. Yang, New time-space upperbounds for directed reachability in high-genus and h-minor-

free graphs, in: Proceedings of the 34th Annual Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014), 2014,
pp. 585–595.

[9] D. Chakraborty, R. Tewari, An 𝑂(𝑛𝜖) space and polynomial time algorithm for reachability in directed layered planar graphs, ACM Trans. Comput. Theory 9 (4)
(2017) 19.

[10] S. Arnborg, A. Proskurowski, Linear time algorithms for np-hard problems restricted to partial k-trees, Discrete Appl. Math. 23 (1) (1989) 11–24.

[11] H.L. Bodlaender, A.M.C.A. Koster, Combinatorial optimization on graphs of bounded treewidth, Comput. J. 51 (3) (2008) 255–269.

[12] S. Arnborg, D.G. Corneil, A. Proskurowski, Complexity of finding embeddings in a k-tree, SIAM J. Algebraic Discrete Methods 8 (2) (1987) 277–284.

[13] U. Feige, M. Hajiaghayi, J.R. Lee, Improved approximation algorithms for minimum weight vertex separators, SIAM J. Comput. 38 (2) (2008) 629–657.

[14] A. Jakoby, T. Tantau, Logspace algorithms for computing shortest and longest paths in series-parallel graphs, in: Proceedings of the 27th Annual Conference on
Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2007), 2007, pp. 216–227.

[15] B. Das, S. Datta, P. Nimbhorkar, Log-space algorithms for paths and matchings in k-trees, Theory Comput. Syst. 53 (4) (2013) 669–689.

[16] M. Elberfeld, A. Jakoby, T. Tantau, Logspace versions of the theorems of Bodlaender and Courcelle, in: Proceedings of the 51st Annual Symposium on Foundations
of Computer Science (FOCS 2010), IEEE Computer Society, 2010, pp. 143–152.

[17] S. Bhore, R. Jain, Space-efficient algorithms for reachability in directed geometric graphs, in: 32nd International Symposium on Algorithms and Computation
(ISAAC 2021), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 151, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany,
2021.

[18] R.J. Chetan Gupta, R. Tewari, Time space optimal algorithm for computing separators in bounded genus graphs, in: 41st IARCS Annual Conference on Foun-

dations of Software Technology and Theoretical Computer Science, (FSTTCS 2021), in: LIPIcs, vol. 152, Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2021.

[19] M. Elberfeld, K.-i. Kawarabayashi, Embedding and canonizing graphs of bounded genus in logspace, in: Proceedings of the 46th Annual ACM Symposium on
Theory of Computing (STOC 2014), ACM, 2014, pp. 383–392.

[20] J. Gilbert, D. Rose, A. Edenbrandt, A separator theorem for chordal graphs, SIAM J. Algebraic Discrete Methods 5 (3) (1984) 306–313.

[21] T. Izumi, Y. Otachi, Sublinear-space lexicographic depth-first search for bounded treewidth graphs and planar graphs, in: A. Czumaj, A. Dawar, E. Merelli (Eds.),
47th International Colloquium on Automata, Languages, and Programming (ICALP 2020), in: Leibniz International Proceedings in Informatics (LIPIcs), vol. 168,
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 2020, pp. 67:1–67:17, https://drops .dagstuhl .de /opus /volltexte /2020 /12474.

[22] M. Cygan, F. Fomin, Ł. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer International Publishing,
2015, https://books .google .de /books ?id =Frg0CgAAQBAJ.

[23] H.L. Bodlaender, T. Hagerup, Parallel algorithms with optimal speedup for bounded treewidth, SIAM J. Comput. 27 (6) (1998) 1725–1746, https://doi .org /10 .
1137 /S0097539795289859.

[24] I. Niepel, P. Rossmanith, Uniform circuits and exclusive read prams, in: S. Biswas, K.V. Nori (Eds.), Foundations of Software Technology and Theoretical
Computer Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 1991, pp. 307–318.

[25] K. Chatterjee, R. Ibsen-Jensen, A. Pavlogiannis, Optimal tree-decomposition balancing and reachability on low treewidth graphs, https://doi .org /10 .15479 /AT :
IST -2014 -314 -V1 -1, 2014.

[26] B.A. Reed, Finding approximate separators and computing tree width quickly, in: Proceedings of the Twenty-Fourth Annual ACM Symposium on Theory of
Computing, STOC’92, Association for Computing Machinery, New York, NY, USA, 1992, pp. 221–228.

[27] F. Wei-Kleiner, Tree decomposition-based indexing for efficient shortest path and nearest neighbors query answering on graphs, J. Comput. Syst. Sci. 82 (1, Part
10

A) (2016) 23–44, https://doi .org /10 .1016 /j .jcss .2015 .06 .008, https://www .sciencedirect .com /science /article /pii /S0022000015000707.

http://refhub.elsevier.com/S0304-3975(23)00564-9/bib747303685E9D056DEFB87D41F260E238s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib500284269DCD66B62545582B2F48C607s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibE54D3D5235CE81A4465B32148231DDAEs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibE54D3D5235CE81A4465B32148231DDAEs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib17D3DCCBD8205733E64639F51E389AE5s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib17D3DCCBD8205733E64639F51E389AE5s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibD685D7A1D0E15D252113FF8067983578s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibD685D7A1D0E15D252113FF8067983578s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibFCC49A40F56367BC3F6306222685767As1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibFCC49A40F56367BC3F6306222685767As1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibCF25479FEE2A8D343C83696163CF7AF3s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibCF25479FEE2A8D343C83696163CF7AF3s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibDAC3ED27751C26950CFB1AD42FFF6389s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibDAC3ED27751C26950CFB1AD42FFF6389s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibDAC3ED27751C26950CFB1AD42FFF6389s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibF926CEEDB6B9AF9182DB5448453E6F61s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibF926CEEDB6B9AF9182DB5448453E6F61s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib80DAEDA73FEB48C34FFBDCC042E0E8F5s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibC8066681B50B472BE2539A424AD1FC83s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib1FCA67100BEF1F203E01691404ABB534s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib9F8BE79FFD3F9D6AFF29D7A59F856435s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibF5DF7E85349E50D4AA29D37D1B3AAA6Ds1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibF5DF7E85349E50D4AA29D37D1B3AAA6Ds1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib749EEAB32EA1E178F2FACC4748C87D0Fs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib59C873CEA16C6A7279EA87F99CD1DDAAs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib59C873CEA16C6A7279EA87F99CD1DDAAs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib1284A5D8B54A05EBC2C932652BCF8439s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib1284A5D8B54A05EBC2C932652BCF8439s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib1284A5D8B54A05EBC2C932652BCF8439s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib9F28F633C9BDE8EF904FBA76E8A14675s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib9F28F633C9BDE8EF904FBA76E8A14675s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib9F28F633C9BDE8EF904FBA76E8A14675s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib72A6126BA5ADB7A1CA54360A28009EDBs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib72A6126BA5ADB7A1CA54360A28009EDBs1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib1C71DC9D827BFF089569C899736545F0s1
https://drops.dagstuhl.de/opus/volltexte/2020/12474
https://books.google.de/books?id=Frg0CgAAQBAJ
https://doi.org/10.1137/S0097539795289859
https://doi.org/10.1137/S0097539795289859
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib8DEB1DCC55E838CA10EA1E37E6367EF4s1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bib8DEB1DCC55E838CA10EA1E37E6367EF4s1
https://doi.org/10.15479/AT:IST-2014-314-V1-1
https://doi.org/10.15479/AT:IST-2014-314-V1-1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibC4151BDE38A5529F1021983451885C3As1
http://refhub.elsevier.com/S0304-3975(23)00564-9/bibC4151BDE38A5529F1021983451885C3As1
https://doi.org/10.1016/j.jcss.2015.06.008
https://www.sciencedirect.com/science/article/pii/S0022000015000707

	Space efficient algorithm for solving reachability using tree decomposition and separators
	1 Introduction
	1.1 Our result
	1.2 Consequences of our result
	1.3 Organization of the paper

	2 Preliminaries
	3 Finding a tree decomposition of small depth
	3.1 Constructing a recursive decomposition
	3.2 Constructing a new tree decomposition

	4 Deciding reachability using a binary balanced tree decomposition
	4.1 Constructing the sequence SEQt,d
	4.2 Algorithm to solve reachability

	Declaration of competing interest
	Data availability
	References

