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Abstract
We show that given an embedding of an O(log n) genus bipartite graph, one can construct an edge
weight function in logarithmic space, with respect to which the minimum weight perfect matching
in the graph is unique, if one exists.

As a consequence, we obtain that deciding whether such a graph has a perfect matching or not
is in SPL. In 1999, Reinhardt, Allender and Zhou proved that if one can construct a polynomially
bounded weight function for a graph in logspace such that it isolates a minimum weight perfect
matching in the graph, then the perfect matching problem can be solved in SPL. In this paper, we
give a deterministic logspace construction of such a weight function for O(log n) genus bipartite
graphs.
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1 Introduction

Given a graph G(V,E), a perfect matching is defined as a set of disjoint edges which covers
all the vertices in the graph. The perfect matching problem asks whether a graph has a
perfect matching or not. The first polynomial time sequential algorithm to solve this problem
was given by Edmonds [6]. Since then, there has been a lot of effort to solve this problem
efficiently in a parallel computation model. NC is a class of problem that can be solved
efficiently in parallel computation model. Lovász gave the first randomized NC algorithm to
solve the perfect matching problem [13]. However, the question whether the problem can be
solved in NC or not is still open.

Mulmuley et al. made significant progress in answering this question and gave the famous
isolating lemma [14].

I Lemma 1. (Isolating Lemma [14]) For a set S = {x1, x2, . . . xn}, let F be a family of
subsets of S. If the elements in the set S are assigned integer weights chosen uniformly
and independently from the set {1, 2, . . . 2n} then with probability greater than half there is a
unique minimum weight set in F .
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Mulmuley et al. used this lemma to get a randomized NC algorithm for finding a perfect
matching in graphs. They also showed that if one can construct an isolating weight function in
NC (derandomizing the isolating lemma), then a perfect matching can be found in NC. SPL is
a class of problems reducible to computing determinant with the promise that the determinant
is either 0 or 1. Allender et al. proved that if one can construct a perfect matching isolating
weight function in logspace then the perfect matching problem can be solved in SPL, which
is a subset of NC2 [2]. In a recent result, a quasi-polynomial (O(log2 n)-bit) size isolating
weight function was constructed for bipartite graphs which implies that the perfect matching
problem can be solved in quasi-NC [7]. This result was subsequently extended to general
graphs as well [17]. However, constructing polynomially bounded isolating weight functions
for general graphs has been elusive so far. Constructing isolating weight functions also
has ramification in the directed graph reachability problem. A logspace construction of a
polynomially bounded path isolating weight function will imply that reachability problem
in directed graphs can be solved in UL, which will solve the NL vs. UL question, which
has been open for a very long time[16]. Also, a logspace construction of a polynomially
bounded perfect matching isolating weight function even for bipartite graphs will prove that
NL ⊆ SPL [4].

Although constructing polynomially bounded isolating weight function seems to be hard
for general graphs, such weight functions have been constructed for various subclasses of
graphs such as planar graphs [18], bounded genus graphs [5], K3,3 and K5-free graphs [3],
graph with small number of matchings [9, 1] and graph with small number of nice cycles
[11]. The weight function constructed in [5] is a O(g · logn)-bit weight function for g-genus
graphs. Thus their result does not yield a polynomial size weight function for the graphs of
genus more than constant. The question whether one can construct a polynomially bounded
isolating weight function efficiently for graphs of genus beyond constant or not has been open
since then. In this work, we settle this question by constructing a O(g + logn) bit isolating
weight function for g-genus graphs. Thus our result gives a polynomial size isolating weight
function for O(logn) genus bipartite graphs.

For a class of bipartite graphs, one way to obtain an isolating weight function is to
construct a skew-symmetric weight function for the same class of directed graphs such that
every cycle in the graph gets a nonzero weight. This is the common technique in most of
the above mentioned results. Having a skew-symmetric weight function such that it gives
nonzero weights to every cycle in the graph, is sufficient for both path and matching isolation
but is not necessary. Also, a weight function which isolates a path in the graph may not
isolate a matching and vice-versa. That is why the weight functions constructed in [12], [19]
and [10] are path isolating but do not isolate perfect matching. In this result, we construct a
weight function which isolates a perfect matching in g-genus graphs even though it does not
give nonzero weight to every cycle in the graphs.

1.1 Our Result
In this paper, we extend the above line of work and prove the following theorem.

I Theorem 2. Given an undirected O(logn) genus bipartite graph along with its polygonal
schema, the problem of deciding whether the graph has a perfect matching or not is in SPL.

Given a g-genus bipartite graph G we construct O(g + logn)-bit weight functions
w1, w2, . . . wk, where k = O(nc + 2g), such that there exists a unique minimum weight
perfect matching in the G with respect to some wi, if G has a perfect matching. To achieve
this, we first construct a directed graph ~G which is same as G, but its edges are assigned
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direction as follows. Let L and R be the two sets of the bipartition of G. We assign a
direction to all the edges in ~G from L to R. Then we divide the perfect matchings of ~G into
different classes according to their signatures. Signature of a matching represents the parity
of number of its edges crossing each pair of sides of the polygonal schema of ~G (defined in
Section 2). Matchings in one class are said to be topologically equivalent to each other in a
sense. Polygonal schema of a g-genus graph consists of 2g pairs of sides. Therefore there
are 22g many classes. We construct our isolating weight function in two steps. In the first
step, we construct a weight function which is a linear combination of the weight function
constructed in [18] and another weight function defined later in this paper and show that
there is at most one minimum weight perfect matching in each class with respect to this
weight function. In the second step, we use the hashing scheme of Fredman, Komlós and
Szemerédi [8] to get k many weight functions w1, w2, . . . , wk such that for some i ≤ k, wi

isolates a minimum weight perfect matching in ~G. A matching in ~G corresponds to a unique
matching G and vice-versa. Therefore we get a unique minimum weight perfect matching in
G with respect to wi.

For g = O(logn) we get k = O(nc′), for some constant c′ > 0. That means we get
polynomially many weight functions such that there is at most one minimum weight perfect
matching in the graph with respect to at least one of the weight function. Then we apply
the result of [2] to get an SPL algorithm for perfect matching problem in O(logn) genus
bipartite graphs.

Comparison with the path isolating weight function for O(log n) genus graphs [10]:
Note that the weight function constructed in [10] is also a linear combination of two weight
functions, one of which gives nonzero weights to all surface separating cycles in the graph.
Therefore, when we divide the paths between a pair of vertices into classes and take any two
minimum weight non-intersecting paths with respect to this weight function from the same
class, we know that the cycle formed by reversing one of the paths is surface separating. Since
every surface separating cycle has nonzero weight, and the weight function is skew-symmetric,
this implies that these paths can not be of equal weights. Which means there is at most one
minimum weight path in each class with respect to that weight function. Similarly, we handle
the case when the paths are intersecting. However, that same weight function does not work
here in matching isolation. Here also we first divide the matchings into classes according to
their signatures. Now if we consider two minimum weight perfect matchings within a class,
all the cycles formed by taking their disjoint union can be surface non-separating. Since the
weight of a surface non-separating cycle can be zero with respect to that weight function, this
does not give any contradiction to the fact that there can be two minimum weight perfect
matchings within a class. In this paper, we overcome this hurdle by constructing a new
weight function which isolates a matching within a class. Then we isolate a matching across
the classes by the technique mentioned above.

1.2 Organization of the Paper
The rest of the paper is organized as follows. In Section 2, we define the necessary notations
and a suitable representation of high genus graphs which we use in this paper. In Section 3,
we define the first part of our weight function, which is a linear combination of two weight
functions defined in that section. In Section 4, we prove that the number of minimum weight
perfect matchings with respect to this weight function is very small. Then we use the hashing
scheme of [8] to obtain our final weight function, which isolates a minimum weight perfect
matching in the graph.

MFCS 2020
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Figure 1 Polygonal schema of K5, embedded on a surface of genus 1. Edges {a, c} and {b, d} are
crossing the sides T1 and T2 respectively. Vertices a and c are said to be incident on the sides T1

and T ′1 respectively.

2 Preliminaries and Notations

A g-genus surface is a sphere with g-many handles on it. A g-genus graph is a graph which
can be embedded on a g-genus surface without intersecting its edges. A g-genus surface can
be represented by a polygon called polygonal schema(see Figure 1). The polygonal schema
of a g-genus surface has 4g-sides T1, T2, T

′
1, T

′
2, . . . , T

′
2g−1, T

′
2g identified in pairs. The sides

Ti and T ′i form a pair together in the sense that an edge going into Ti will come out of T ′i
and vice versa. An embedding of a graph G on a g-genus surface can be represented by an
embedding of G inside this polygon. In such an embedding an edge {u, v} of a graph G is
said to cross a side S of the polygonal schema, if u or v is incident on the side S (for example
in Figure 1, the edge {a, c} is crossing the sides T1 and T ′1). We assume that we are given the
combinatorial embedding of the graph G inside this polygon together with the ordered set of
edges crossing each side of the polygon. We also assume that no vertex of G lies on the sides
of the polygonal schema. Such an embedding is called the polygonal schema of the graph G.

In the polygonal schema of a graph G, the edges which do not cross any side of the
polygonal schema, we call them planar edges. Note that in the polygonal schema of a graph
G, the subgraph induced by the planar edges of G, is a planar graph and we call this subgraph
Gplanar.

A piecewise straight-line embedding of a planar graph is an embedding where all the
vertices of the graph have integral coordinates and the edges are piecewise straight line
segment connecting their two end points. Given a combinatorial embedding of a planar graph,
a piecewise straight-line embedding of it can be constructed in logspace [18]. Thus given
a polygonal schema of a g-genus graph G, a piecewise straight-line embedding of Gplanar
can be constructed in logspace. We will need such an embedding to construct our desirable
weight function.

Given the polygonal schema of a g-genus graph G, we define the signature of an edge e in
G, denoted as sign(e), as a 2g-bit binary string b1b2 . . . b2g, such that bi = 1 if e crosses Ti,
otherwise 0. Similarly, for any set of edges say E = {e1, e2, . . . , ek}, we define the signature
of E as, sign(E) = sign(e1) ⊕ sign(e2)⊕ . . . ⊕ sign(ek), where ⊕ represents the bitwise-XOR
operator. Note that the i-th bit in the signature of a set E represents the parity of the
number of edges from that set, crossing the side Ti, i.e. if the number of edges in the set E,
crossing the side Ti are even then i-th bit in the sign(E) will be 0; otherwise it will be 1.
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Followings are the properties of signature that we will use later in this paper. For any set of
edges E1, E2, and E3 of the graph G, we have
(a) commutativity: sign(E1) ⊕ sign(E2) = sign(E2) ⊕ sign(E1),
(b) associativity:

(
sign(E1) ⊕ sign(E2)

)
⊕ sign(E3) = sign(E1) ⊕

(
sign(E2) ⊕ sign(E3)

)
.

Without loss of generality assume that each edge crosses at most one pair of sides of the
polygonal schema. If it crosses more than one pair of sides, we break it into multiple edges
by inserting dummy vertices. To preserve matching, we always break an edge into an odd
number of edges. Every term defined until now remains the same in case of directed graphs
as well.

Since in this paper we work with both directed and undirected graphs, it is essential
that we make a demarcation in the notation used for directed and undirected graphs. For a
directed edge ~e = (u, v), the edge e = {u, v} represents the underlying undirected edge and
the edge ~e r represents the directed edge (v, u) that is the edge ~e with its direction reversed.
Similarly, for any set of directed edges ~E, set E represents the set of underlying undirected
edges of ~E and set ~E r represents the set where each edge ~e ∈ ~E is replaced with the edge ~e r.

In a directed graph ~G, we call a set of edges ~C, a directed cycle if (i) edges of C (underlying
undirected edges of ~C) form a simple cycle and, (ii) for every two adjacent edges of ~C, tail
of one edge is followed by the head of another edge. When we call ~C just a cycle then (ii)
may not hold. Similarly, we can define a directed path and path in ~G.

(0)k represents the string
k-times︷ ︸︸ ︷
00 . . . 0, where k is an integer. For an integer l > 0, [l] denotes

the set {1, 2, . . . , l}.

3 Isolating Weight function

As discussed in the introduction, our main goal here is to construct a weight function for
graphs efficiently. Let us first define the weight function formally. A weight function for a
graph (directed or undirected) G(V,E) is a map w : E → Z which assigns an integer weight
to every edge in the graph. For any set of edges E′ in the graph, the weight of the set E′ is
defined as w(E′) =

∑
e∈E′ w(e). A weight function w for a graph G is called min-isolating if

there exists at most one minimum weight perfect matching in G with respect to the weight
function w.

In case of directed graphs, a weight function w is called skew-symmetric if w(~e) = −w(~e r),
for all ~e ∈ ~E.

For a g-genus graph ~G, we define a weight function wcomb which is a linear combination
of the following two weight functions.

The first weight function we define is the same as the one defined in [18] for directed
planar graphs. We call it wpl. As we mentioned in Section 2, we can construct a piecewise
straight-line embedding of ~Gplanar in logspace. In such an embedding an edge of the
graph ~Gplanar consists of constant many straight line segments. We assign weights to
these line segments and the weight of an edge is defined as the sum of the weights of
the line segments constituting that edge. Let ~l be a line segment such that (x1, y1) and
(x2, y2) be the coordinates of its head and tail in such a piecewise straight-line embedding.
Weight of ~l is defined as wpl(~l) = (y2 − y1)(x1 + x2) and weight of an edge ~e is defined as

wpl(~e) =
{∑

~l∈~e wpl(~l), if ~e is a planar edge,
0, otherwise.

(1)

MFCS 2020
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We state the following theorem regarding the weight function wpl, which gives us a
characterization of the weight of a directed cycle in a directed planar graph, established
as Lemma 3 in [18].
I Theorem 3 ([18]). Given a piecewise straight-line embedding of a planar graph ~G, there
exists a logspace computable weight function wpl such that for any directed cycle ~C in ~G, we
have wpl(~C) = 2 ·Area(~C) if ~C is a counter-clockwise cycle and wpl(~C) = −(2 ·Area(~C))
if ~C is a clockwise cycle, where Area(~C) is the area of the region enclosed by ~C.
We define another weight function wside as follows. Let σ = (~f1, ~f2, . . . , ~fk) be the ordered
set of edges crossing the sides of the polygonal schema T1 to T2g, ordered in a clockwise
manner starting from the tail of T1.

wside(~fi) =
{
i, if tail(~fi) is incident on some side Tj for j ∈ [2g],
−i, if head(~fi) is incident on some side Tj for j ∈ [2g].

For all other edges ~e, wside(~e) = 0.
Our weight function wside is somewhat similar to the weight function defined in Theorem
8 of [5]. However, the main difference is that, in [5], they define 2g many weight functions
(one for each pair of sides of the polygonal schema) similar to wside and their final weight
function is a linear combination of those 2g weight functions, making it an O(g · logn)-bit
size weight function for g-genus graphs. Whereas in this paper wside is a single O(logn)-bit
weight function for a g-genus graph.
Since each of these two weight functions are polynomially bounded and are computable
in logspace, the overall computation remains in logspace as well. We combine these two
weight functions into a single weight function and call it wcomb, defined as follow:

wcomb = wpl · n10 + wside. (2)
Since for any two subsets of edges ~E′1 and ~E′2 of the graph, both weight functions wpl and wside

are loosely bounded by n10, hence wcomb( ~E′1) = wcomb( ~E′2) if and only if wpl( ~E′1) = wpl( ~E′2)
and wside( ~E′1) = wside( ~E′2).

Note that in the perfect matching problem, we are given an undirected graph and asked
to find if the graph has a perfect matching or not. However, we have defined the weight
function wcomb for directed graphs. In order to give weights to an undirected bipartite graph
G, we first obtain a directed graph ~G and construct a weight function for ~G. Then we use
that weight function to build a weight function for G.

Let G be an undirected bipartite graph and (L,R) be its bipartition. We construct a
directed graph ~G as follows. For an edge {u, v} in G such that u ∈ L and v ∈ R, we replace
it with a directed edge (u, v) in ~G. We use Reingold’s algorithm [15] to find out whether a
vertex belongs to L or R. Let w be a weight function for ~G. We define corresponding weight
function wund for G as follow. For an edge {u, v} ∈ G such that u ∈ L and v ∈ R,

wund
(
{u, v}

)
= w(u, v), where (u, v) ∈ ~G (3)

Note that if ~M is a matching of weight t in ~G then M will be a matching of weight t in G.
Thus, if w is a min-isolating weight function for ~G then wund will be min-isolating for G.
Also note that the construction of the graph ~G is the place where we use the bipartiteness of
G crucially.

In the next section, we will construct a min-isolating weight function for directed g-genus
bipartite graphs. Then ultimately we will use that weight function to obtain a min-isolating
weight function for undirected g-genus bipartite graphs.
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4 Isolating a Minimum Weight Perfect Matching

Let ~G be a g-genus bipartite graph and (L,R) be its bipartition. Let us assume that all the
edges in ~G have direction from L to R. We will prove that there are at most 22g minimum
weight perfect matchings in ~G with respect to the weight function wcomb, if ~G has a perfect
matching.

Let ~M be a perfect matching in ~G. As we defined in Section 2, the signature of ~M is,

sign( ~M) = sign(~e1) ⊕ sign(~e2) ⊕ . . .⊕ sign(~ej), where ~ei ∈ ~M for all i ∈ [j].

Note that for a g-genus graph each matching has a 2g-bit signature. Thus there are 22g

many possible signatures. For each 0 ≤ i ≤ 22g − 1, let bin(i) represent the 2g-bit binary
number(with possible leading 0’s) equivalent to an integer i. We define a class Ai of perfect
matchings in ~G with respect to the signature bin(i) for all 0 ≤ i ≤ 22g − 1, as

Ai = { ~M | ~M is a perfect matching in ~G and sign( ~M) = bin(i)}

We will prove that there exists at most one minimum weight perfect matching in each
class with respect to the weight function wcomb.

I Lemma 4. For a g-genus bipartite graph ~G, there exists at most one minimum weight perfect
matching in the class Ai with respect to the weight function wcomb, for all 0 ≤ i ≤ 22g − 1.

For two matchings ~M1 and ~M2 in ~G, we define ~E ~M1∆ ~M2
= ( ~M1 ∪ ~M2) \ ( ~M1 ∩ ~M2). Let

us first prove the following lemma about the characterization of the edges in the set ~E ~M1∆ ~M2
,

when ~M1 and ~M2 are two perfect matchings from the same class.

I Lemma 5. If ~M1 and ~M2 are the two perfect matchings in the class Ai then sign( ~E ~M1∆ ~M2
)=

(0)2g that is, the edges in the set ~E ~M1∆ ~M2
collectively cross each side of the polygonal schema

an even number of times.

Proof. Since ~M1 and ~M2 are the matchings from the same class, we have

sign( ~M1) = sign( ~M2)
sign( ~M1)⊕ sign( ~M2) = (0)2g(

sign( ~M1 ∩ ~M2)⊕ sign( ~E ~M1∆ ~M2
\ ~M2)

)
⊕(

sign( ~M1 ∩ ~M2)⊕ sign( ~E ~M1∆ ~M2
\ ~M1)

)
= (0)2g

We know that for any set of edges ~S, sign(~S) ⊕ sign(~S) = (0)2g; and from the properties
of signature mentioned in Section 2, we have(

sign( ~E ~M1∆ ~M2
\ ~M2)

)
⊕
(

sign( ~E ~M1∆ ~M2
\ ~M1)

)
= (0)2g

sign( ~E ~M1∆ ~M2
) = (0)2g. J

We will now show that there is at most one minimum weight perfect matching in each
class. Assume that ~M1 and ~M2 are the two minimum weight perfect matchings in the class
Ai with respect to the weight function wcomb. We know that the edges in the set ~E ~M1∆ ~M2

form vertex disjoint cycles. Let ~C1, ~C2, . . . , ~Ck be those cycles. Notice that all the edges in
the cycle ~Ci are directed from L to R therefore ~Ci is not a directed cycle, for any i. Also,
note that each ~Ci consists of even number of edges and contain alternating edges from ~M1
and ~M2. Hence we can claim the following.

MFCS 2020
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B Claim 6. Let ~E1i and ~E2i be the set of edges of ~M1 and ~M2 respectively in ~Ci then
wcomb( ~E1i) = wcomb( ~E2i), for all i ∈ [k].

Proof. Let us assume that there exists some j ∈ [k] such that wcomb( ~E1j) 6= wcomb( ~E2j).
Without loss of generality assume that wcomb( ~E1j) > wcomb( ~E2j). Now consider a new
perfect matching

(
( ~M1 \ ~E1j) ∪ ~E2j

)
. This matching has strictly lesser weight than ~M1,

which is a contradiction because we have assumed that ~M1 is a minimum weight perfect
matching. C

Now consider another graph ~G′ which is same as ~G but direction of the edges belonging to
~M2 is reversed in ~G′. Let ~M ′1 and ~M ′2 be the matchings in ~G′ corresponding to the matchings
~M1 and ~M2 in ~G, i.e. underlying undirected edges of matchings ~M1 and ~M2 are same as
that of matchings ~M ′1 and ~M ′2 respectively. We know that the edges in the set ~E ~M ′

1∆ ~M ′
2
will

form vertex disjoint cycles. Let ~C ′1,
~C ′2, . . . ,

~C ′k be those cycles and ~E′1i and ~E′2i be the edges
of matching ~M ′1 and ~M ′2 respectively, in the cycle ~C ′i. By claim 6 we know that

wcomb( ~E1i) = wcomb( ~E2i), for all i ∈ [k].

Also ~E1i = ~E′1i and ~E2i = ~E′ r2i , therefore

wcomb( ~E′1i) = wcomb( ~E′ r2i ), for all i ∈ [k].

Since wcomb is skew-symmetric, we have

wcomb( ~E′1i) = −wcomb( ~E′2i),
wcomb( ~E′1i) + wcomb( ~E′2i) = 0,
wcomb( ~C ′i) = 0, for all i ∈ [k]. (4)

Note that the edges in the set ~E′1i have direction from L to R and the edges in set ~E′2i

have direction from R to L therefore the cycles ~C ′1,
~C ′2, . . . ,

~C ′k are the directed cycles in ~G′.
We will now prove that wcomb( ~C ′i) 6= 0 for some i ∈ [k], which will be a contradiction with
Equation 4.

Since changing the direction of an edge does not change its signature, by Lemma 5 we
know that sign( ~C ′1)⊕ sign( ~C ′2)⊕ . . .⊕ sign( ~C ′k) = (0)2g.

I Lemma 7. Let ~G′ be a g-genus graph which contains directed cycles { ~C ′1, ~C ′2, . . . , ~C ′k}
such that sign ( ~C ′1)⊕ sign ( ~C ′2)⊕ . . .⊕ sign ( ~C ′k) = (0)2g. Then there exists i ∈ [k], such that
wcomb( ~C ′i) 6= 0.

Proof. First consider the case, when no edge of the cycles { ~C ′1, ~C ′2, . . . , ~C ′k} crosses any side
of the polygonal schema. In that case each cycle ~C ′i is a planar cycle i.e. consists of only
planar edges. By Theorem 3 we know that wpl( ~Ci) 6= 0, which implies that wcomb( ~Ci) 6= 0
for all i ∈ [k]. Hence the lemma holds in this case.

We will now prove the lemma for the case when some edges of the cycles { ~C ′1, ~C ′2, . . . , ~C ′k}
cross some sides of the polygonal schema.

Let us consider a graph G′′ such that edges of G′′ are the underlying undirected edges of
the cycles ( ~C ′1, ~C ′2, . . . , ~C ′k). Let C = (C ′′1 , C ′′2 , . . . , C ′′k ) be the cycles in G′′ corresponding to
cycles ( ~C ′1, ~C ′2, . . . , ~C ′k). We will construct another directed graph ~G′′ from G′′(by assigning
direction to the edges of G′′) such that either ~C ′′i = ~C ′i or ~C ′′i = ~C ′ri , for all i ∈ [k]. Let EC
be the set of edges of the cycles in C. We assign direction to the edges of EC in two steps.
In the first step, we assign direction to only those edges of EC which are crossing some side
of the polygonal schema. In the second step, we assign direction to the planar edges of EC ,
based on the direction of the edges which were assigned direction in the first step.
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T2

T ′1

T ′2

a

Figure 2 (v1, v2, v3, v4, v5, v6, v7, v8) are the vertices of the edges which are crossing sides of the
polygonal schema. Path v8av5 is a planar path.

We know that all the cycles in C collectively cross each side of the polygonal schema an
even number of times. Let E = (e1, e2, . . . e2l) for some integer l > 0, be the edges in the set
EC , which cross some of the sides of the polygonal schema, indexed in clockwise order from
T1 to T2g, starting from the tail of T1. Without loss of generality assume that no two edges
in E share a vertex because if they do, we insert a dummy vertex in one of the edges to
replace its end point so that our assumption holds. We will need this assumption to simplify
our analysis.

Step 1: In this step, we assign direction to the edges in the set E. Let ei = {u, v} be an
edge in E such that u and v are incident on sides Tj and T ′j respectively, of the polygonal
schema. We assign direction to ei ∈ E as follows:

Assign direction to ei from u to v, if i is odd, i.e. assign direction to ei in such a way
that u becomes the tail of ~ei and v becomes the head of ~ei in ~G′′.
Similarly, assign direction to ei from v to u, if i is even.

Before going to Step 2, let us make the following observations. Let ~E = (~e1, ~e2 . . . ~e2l) be
the edges in ~G′′ corresponding to edges in E after Step 1. Let X = {v1, v2, . . . v4l} be the
vertices of the edges of ~E ordered in a clockwise manner, according to their incidence on
the side of the polygonal schema, starting from the tail of T1(see Figure 2). Note that,

~ei = (vd1 , vd2), where d1 is odd and d2 is even, for all i ∈ [2l]. (5)

We define a function τ : X → X. τ(vi) = vj if there is a simple path P from vi to vj

which consists of only planar edges of EC, for i, j ∈ [4l]. We call such paths as planar
paths (see Figure 2). Since vertices in X are the part of simple cycles, the function τ is a
bijective function.
I Lemma 8. If τ(vi) = vj, then |i− j| is odd.

Proof. Assume that both i and j are odd. Without loss of generality assume that j > i.
This implies that there are an odd number of vertices in the set X, between vi and vj

namely, X ′ = (vi+1, vi+2, . . . vj−1). Note that vertices in X ′ are part of non-intersecting
simple cycles therefore they must be connected to each other through simple planar
paths. Since τ is a bijective function we know that there is some vertex v′ ∈ X ′ such that
τ(v′) = vt where t ∈ [4l] and, t > j or t < i. This is not possible because it will imply that
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planar paths say from v′ to vt and from vi to vj say P1 and P2 respectively, must intersect
each other. This is a contradiction since P1 and P2 are the parts of non-intersecting
cycles. J

I Lemma 9. Let P be a planar path between vertices vi and vj , i, j ∈ [4l]. If vi is the
head of some edge then vj will be the tail of some edge, in ~E and vice versa.

Proof. Let vi and vj both the vertices are the heads of the edges ec1 and ec2 , where
c1, c2 ∈ [k]. We know that if i is even then j is odd and if i is odd then j is even. Without
loss of generality assume that i is even and j is odd. However, from Equation 5 we know
that j must be even. Hence we get a contradiction to Lemma 8.
Similarly, we can handle the case when vi and vj are the tail of some edges. J

Step 2: Now we will assign the direction to the planar edges of ~G′′. This step is
straightforward. Take a planar path P of ~G′′. Let v′ and v′′ be its end vertices such that
v′ is the head of an edge ~e′ and v′′ is the tail of some edge ~e′′, where ~e′, ~e′′ ∈ ~E. Assign
direction to all the edges in P in such a way that the path ~P ′ = ~e′ ~P ~e′′ becomes a directed
path in ~G′′.

Let ~C ′′1 ,
~C ′′2 , . . . ,

~C ′′k be the cycles in ~G′′ after assigning direction to the underlying undir-
ected cycles C ′′1 , C ′′2 , . . . , C ′′k . After assigning direction using the above procedure, we can
ensure that no two adjacent edges in the cycle ~C ′′i for all i ∈ [k] get opposite direction i.e. if
~e and ~e′ are two adjacent edges in the cycle ~C ′′i then the tail of e will be followed by the head
of ~e′ or vice-versa (because of Step 2). This implies that ~C ′′1 ,

~C ′′2 , . . . ,
~C ′′k are the directed

cycles in ~G′′. Note that the way we have defined weight function wside, we know that

wside(~ei) < −
(
wside(~ei+1)

)
, for all odd i ∈ [2l − 1]

=⇒ wside(~e1) + wside(~e3) + . . . + wside(~e2l−1) < −
(
wside(~e2) + wside(~e4) + . . . + wside(~e2l)

)
=⇒ wside(~e1) + wside(~e3) + . . . + wside(~e2l−1) + wside(~e2) + wside(~e4) + . . . + wside(~e2l) 6= 0.

Since for all planar edges ~e, wside(~e) = 0,

k∑
i=1

wside( ~C ′′i ) 6= 0.

Thus there exist some i ∈ [k] such that

wside( ~C ′′i ) 6= 0 =⇒ wcomb( ~C ′′i ) 6= 0, (6)

Note that ~C ′i and ~C ′′i for all i ∈ [k], are the directed cycles such that their underlying
undirected cycle is same. In a directed cycle there are only two directions possible. Therefore,
we can say that

~C ′i = ~C ′′i or ~C ′i = ~C ′′ ri ,

⇒ wcomb( ~C ′i) = wcomb( ~C ′′i ) or wcomb( ~C ′i) = wcomb( ~C ′′ ri ),
⇒ wcomb( ~C ′i) = wcomb( ~C ′′i ) or wcomb( ~C ′i) = −wcomb( ~C ′′i ), for all i ∈ [k], since (7)

wcomb is skew-symmetric.

From Equation 6 and 7 we can conclude that there exists some i ∈ [k] such that
wcomb( ~C ′i) 6= 0. J
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This gives a contradiction with Equation 4. Therefore we can conclude that there cannot
exist two minimum weight perfect matchings in ~G within a class Ai for all 0 ≤ i ≤ 22g − 1.
This finishes the proof of Lemma 4.

Note that we have proved that there is at most one minimum weight perfect matching
in each class and there are total 22g many classes. Therefore, we can say that there are at
most 22g minimum weight matchings in ~G with respect to the weight function wcomb. As we
mentioned in Section 3 that given a weight function wcomb for a directed bipartite graph
~G such that edges of ~G are directed from L to R, we can get a weight function wund

comb for
underlying undirected graph G such that if ~M is a matching of weight t in ~G then M will be
a matching of weight t in G.

I Lemma 10. Given a g-genus graph G along with its polygonal schema we can construct
a weight function wund

comb for G in logspace such that there are at most 22g minimum weight
perfect matchings in G with respect to wund

comb.

Now that given an undirected graph G we have obtained at most 22g many minimum
weight perfect matchings in G, we will use the following hashing scheme by Fredman, Komlós
and Szemerédi [8] to isolate a minimum weight perfect matching among them. Let us first
state their result in a form suitable to our purpose.

I Theorem 11. [8] Let S = {x1, x2, . . . , xk} be a set of n-bit integers. Then there exists a
O(logn+ log k)-bit prime number p so that for all xi 6= xj ∈ S, xi mod p 6= xj mod p.

Let M be the set of minimum weight perfect matchings in G with respect to wund
comb.

Assume edges of the graph G are indexed as e1, e2, . . . , em. Let wb be a weight function
that assigns weight 2i to the edge ei. This is an m-bit weight function, where m ≤ n2. All
matchings in G get different weight with respect to this weight function therefore, any two
matchings M1,M2 ∈M, wb(M1) 6= wb(M2). Also, note that |M| ≤ 22g, because each class
has at most one minimum weight perfect matching. Thus by Theorem 11 there exists an
O(logn+ g)-bit prime p such that with respect to weight function wfks := wb mod p, every
matching inM gets a different weight. Hence our final min-isolating weight function for G
will be,

wp := wund
comb · n10 + wfks,

Note that for every O(logn + g)-bit prime p we get a corresponding weight function
wp and by Theorem 11 we know that there will be at least one O(logn + g)-bit prime p1
such that wp1 isolates a minimum weight perfect matching in G. Thus we can conclude the
following.

I Theorem 12. Given a g-genus graph along with its polygonal schema, we can construct
weight functions w1, w2, . . . , wk in O(logn+g) space such that if graph has a perfect matching
then for some i ∈ [k] and, G has a unique perfect matching M of weight j with respect to
weight function wi, where j, k = O(nc + 2g) for some constant c > 0.

For a graph of genus g = O(logn) we get polynomially many weight functions w1, w2, . . . wt

where t = O(nc) for some constant c, such that each wi is polynomially bounded and there is
a unique minimum weight perfect matching in graph with respect to at least one wi if G has
a perfect matching. Then we apply the algorithm given in [2] to get an SPL algorithm for
perfect matching in O(logn) genus bipartite graphs. This finishes the proof of Theorem 2.
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