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An O (nϵ ) Space and Polynomial Time Algorithm

for Reachability in Directed Layered Planar Graphs
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Given a graph G and two vertices s and t in it, graph reachability is the problem of checking whether there
exists a path from s to t in G. We show that reachability in directed layered planar graphs can be decided
in polynomial time and O (nϵ ) space, for any ϵ > 0. The previous best-known space bound for this problem
with polynomial time was approximately O (

√
n) space (Imai et al. 2013).

Deciding graph reachability in SC (Steve’s class) is an important open question in complexity theory, and
in this article, we make progress toward resolving this question.
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1 INTRODUCTION

Given a graph and two vertices s and t in it, the problem of determining whether there is a path
from s to t in the graph is known as the graph reachability problem. Graph reachability problem is
an important question in complexity theory. Particularly in the domain of space bounded computa-
tions, the reachability problem in various classes of graphs characterize the complexity of different
complexity classes. The reachability problem in directed and undirected graphs is complete for the
classes non-deterministic log-space (NL) and deterministic log-space (L), respectively [20, 22]. The
latter follows due to a famous result by Reingold who showed that undirected reachability is in L

[22]. Various other restrictions of reachability have been studied in the context of understanding
the complexity of other space bounded classes (see [14, 19, 23]). Wigderson gave a fairly com-
prehensive survey that discusses the complexity of reachability in various computational models
[26].
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The time complexity of directed reachability is fairly well understood. Standard graph traversal
algorithms such as DFS (depth-first search) and BFS (breadth-first search) solve this problem in
linear time. We also have a O (log2 n) space algorithm due to Savitch [24], however, it requires
O (nlog n ) time. The question whether there exists a single algorithm that decides reachability in
polynomial time and polylogarithmic space is unresolved. In his survey, Wigderson asked whether
it is possible to design a polynomial time algorithm that uses only O (nϵ ) space for some constant
ϵ < 1 [26]. This question is also still open. In 1992, Barnes, Buss, Ruzzo, and Schieber made some
progress on this problem and gave an algorithm for directed reachability that requires polynomial

time and O (n/2
√

log n ) space [7].
Planar graphs are a natural topological restriction of general graphs consisting of graphs that

can be embedded on the surface of a plane such that no two edges cross. Grid graphs are a subclass
of planar graphs, where the vertices are placed at the lattice points of a two dimensional grid and
edges occur between a vertex and its immediate adjacent horizontal or vertical neighbor.

Asano and Doerr provided a polynomial time algorithm to compute the shortest path (hence,
can decide reachability) in grid graphs, which uses O (n1/2+ϵ ) space for any small constant ϵ > 0
[5]. Imai et al. extended this to give a similar bound for reachability in planar graphs [17]. Their
approach was to use a space efficient method to design a separator for the planar graph and use the
divide and conquer strategy. Note that although it is known that reachability in grid graphs reduces
to planar reachability in log-space, since this class (polynomial time and O (n1/2+ϵ ) space) is not
closed under log-space reductions, planar reachability does not follow from grid graph reachabil-
ity. Subsequently, the result of Imai et al. was extended to the class of high-genus and H -minor-free

graphs [12]. Recently, Asano et al. gave a Õ (
√
n) space and polynomial time algorithm for reacha-

bility in planar graphs, thus improving upon the previous space bound [6]. More details on known
results can be found in a recent survey article [25].

In another line of work, Kannan et al. gave a O (nϵ ) space and polynomial time algorithm for
solving the reachability problem in unique path graphs [18]. Unique path graphs are a generaliza-
tion of strongly unambiguous graphs, and a reachability problem in strongly unambiguous graphs is
known to be in SC (Steve’s class) (polynomial time and polylogarithmic space) [11, 15]. Reachabil-
ity in strongly unambiguous graphs can also be decided by anO (log2 n/ log logn) space algorithm;
however, this algorithm requires super polynomial time [3]. SC also contains the class randomized

log-space or RL [21]. We refer the readers to a recent survey by Allender [1] to further understand
the results on the complexity of the reachability problem in UL (unambiguous log-space) and on
certain special subclasses of directed graphs.

Our Contribution

We show that reachability in directed layered planar graphs can be decided in polynomial time
andO (nϵ ) space for any constant ϵ > 0. A layered planar graph is a planar graph where the vertex
set is partitioned into layers (say L0 to Lm ) and every edge occurs between layers Li and Li+1 only.
Our result significantly improves upon the previous space bound due to References [17] and [6]
for layered planar graphs.

Theorem 1.1. For every ϵ > 0, there is a polynomial time and O (nϵ ) space algorithm that decides

reachability in directed layered planar graphs.

Reachability in layered grid graphs (denoted as LGGR) is in UL, which is a subclass of NL [2].
Subsequently, this result was extended to the class of all planar graphs [10]. Allender et al. also gave
some hardness results for the reachability problem in certain subclasses of layered grid graphs.
Specifically, they showed that 1LGGR is hard for [NC (Nick’s class)]1 and 11LGGR is hard for TC0

[2]. Both these problems are, however, known to be contained in L.
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As a consequence of our result, it is easy to achieve the same time-space upper-bound for the
reachability problem in upward planar graphs. We say that a graph is upward planar if it admits an
upward planar drawing, i.e., a planar drawing where the curve representing each edge should have
the property that every horizontal line intersects it in at most one point. In the domain of graph
drawing, it is an important topic to study the upward planar drawing of planar DAGs (directed
acyclic graphs) [8, 9]. It is NP-complete to determine whether a planar DAG with multiple sources
and sinks has an upward planar drawing [16]. However, given an upward planar drawing of a
planar DAG, the reachability problem can easily be reduced to reachability in a layered planar
graph using only logarithmic amount of space and, thus, admits the same time-space upper bound
as of layered planar graphs.

Firstly, we argue that it is enough to consider layered grid graphs (a subclass of general grid
graphs). Now, on a layered grid graph, if we directly apply DFS (depth-first search), then we need
linear space, where the space requirement is because of storing the current path and marking
already visited vertices while constructing the DFS tree. Now, to avoid linear space usage, we use
the divide and conquer strategy. We divide a given layered grid graph into a coarser grid structure
along k horizontal and k vertical lines (see Figure 1). We then design a modified DFS strategy that
makes queries to the smaller graphs defined by these gridlines (we assume a solution in the smaller
graphs by recursion) and visits every reachable vertex from a given start vertex. The modified
DFS stores the highest visited vertex in each vertical line and the left-most visited vertex in each
horizontal line. We use this information to avoid visiting a vertex a multiple number of times in
our algorithm. The assumption that the given graph is a layered grid graph guarantees that we
will not miss out on any path while constructing the DFS tree using only this information instead
of marking all the previously visited vertices. The choice of the value of k helps us to bound the
length of any path and thus the space required to store any current path. We choose the number
of horizontal and vertical lines to divide the graph appropriately to ensure that the algorithm runs
in the required time and space bound.

The rest of the article is organized as follows. In Section 2, we give some basic definitions and
notations that we use in this article. We also state certain earlier results that we use in this article.
In Section 3, we give a proof of Theorem 1.1.

2 PRELIMINARIES

We will use the standard notations of graphs without defining them explicitly and follow the
standard model of computation to discuss the complexity measures of the stated algorithms. In
particular, we consider the computational model in which an input appears on a read-only tape
and the output is produced on a write-only tape and we only consider an internal read-write tape
in the measure of space complexity. Throughout this article, by log, we mean logarithm to the
base 2. We denote the set {1, 2, . . . ,n} by [n]. Given a graphG, letV (G ) and E (G ) denote the set of
vertices and the set of edges of G, respectively.

Definition 2.1 (Layered Planar Graph). A planar graphG = (V ,E) is referred to as layered planar

if it is possible to represent V as a union of disjoint partitions, V = V1 ∪V2 ∪ · · · ∪Vk , for some
k > 0, and for any two consecutive partitions Vi and Vi+1, there is a planar embedding of edges
from the vertices ofVi to that ofVi+1 and there is no edge between two vertices of non-consecutive
partitions.

Now, let us define the notion of the layered grid graph and also note that grid graphs are by
definition planar.

Definition 2.2 (Layered Grid Graph). A directed graphG is said to be an n × n grid graph if it can
be drawn on a square grid of size n × n and two vertices are neighbors if their L1-distance is one.
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19:4 D. Chakraborty and R. Tewari

In a grid graph, an edge can have four possible directions, i.e., north, south, east, and west, but if
we are allowed to have only two directions north and east, then we call it a layered grid graph.

We also use the following result of Allender et al. to simplify our proof [2].

Proposition 2.3 ([2]). The reachability problem in directed layered planar graphs is log-space

reducible to the reachability problem in layered grid graphs.

2.1 Class nSC and Its Properties

T ISP (t (n), s (n)) denotes the class of languages decided by a deterministic Turing machine that
runs in time O (t (n)) and uses O (s (n)) space. Then, SC = T ISP (nO (1), (logn)O (1) ). Expanding the
class SC, we define the complexity class nSC (short for near-SC) in the following definition.

Definition 2.4 (Complexity Class near-SC or nSC). For a fixed ϵ > 0, we define

nSCϵ := T ISP (nO (1),nϵ ).

The complexity class nSC is defined as

nSC :=
⋂
ϵ>0

nSCϵ .

We next show that nSC is closed under log-space reductions, denoted by ≤l . For the definition
of log-space reduction, we refer the reader to any standard textbook on computational complexity
(e.g., Definition 4.16 of Reference [4]). This is an important property of the class nSC and will be
used to prove Theorem 1.1. Although the proof is quite standard, for the sake of completeness, we
provide it here.

Theorem 2.5. If A ≤l B and B ∈ nSC , then A ∈ nSC .

Proof. Let us consider that a log-space computable function f be the reduction from A to B. It
is clear that for any x ∈ A such that |x | = n, | f (x ) | ≤ nc for some constant c > 0. We can think that
after applying the reduction, f (x ) appears in a separate write-once output tape and then we can
solve f (x ), which is an instance of the language B, and now the input length is at most nc . Now,
take any ϵ > 0 and consider ϵ ′ = ϵ

c
> 0. B ∈ nSC implies that B ∈ nSCϵ ′ , and as a consequence,

A ∈ nSCϵ . This completes the proof. �

Let us now consider deterministic auxiliary pushdown machines instead of deterministic Turing
machines and study the power of the corresponding complexity class. However, note that the result
that we are going to discuss now is not required to prove our main theorem, i.e., Theorem 1.1, and
thus is of independent interest. First, we define the complexity class P-nSC (short for Pushdown
near-SC) as follows.

Definition 2.6 (Complexity Class Pushdown near-SC or P-nSC). For a fixed ϵ > 0, we define
P-nSCϵ to be the class of languages decided by a deterministic auxiliary pushdown machine that
runs in time nO (1) and uses nϵ space. The complexity class P-nSC is defined as

P-nSC :=
⋂
ϵ>0

P-nSCϵ .

Next, we show that in the scenario we are concerned about, a deterministic auxiliary pushdown
machine does not provide any extra power over a deterministic Turing machine.

Theorem 2.7. P-nSC=nSC.

The above theorem comes as a corollary of an old result by Cook [15], and here, we first restate
that result.
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Theorem 2.8 ([15]). If a language is decided by a deterministic auxiliary pushdown machine

that runs in time t (n) and uses s (n) ≥ logn space, then that language is in T ISP ((t (n))6, (s (n) +
log t (n)) log t (n)).

Now, it is easy to see that Theorem 2.7 follows from the above theorem.

Proof of Theorem 2.7. From the definition of deterministic auxiliary pushdown machine, it is
trivial to see that for any ϵ > 0, nSCϵ ⊆ P-nSCϵ and thus nSC ⊆ P-nSC .

Now, for the converse direction, let us consider a language L ∈ P-nSC , which implies L ∈ P-nSCϵ

for any ϵ > 0. Now, by Theorem 2.8, L ∈ nSC2ϵ . As a consequence, L ∈ nSC and this completes the
proof. �

3 REACHABILITY IN LAYERED PLANAR GRAPHS

In this section, we prove Theorem 1.1. We first apply Proposition 2.3 and Theorem 2.5 to claim that
to prove Theorem 1.1, it is sufficient to show that the reachability problem in layered grid graphs
(denoted as LGGR) is in nSC. Now, we devote the rest of the article to prove that it is indeed the
case that the problem LGGR is in nSC.

Theorem 3.1. LGGR ∈ nSC.

To establish Theorem 3.1, we define an auxiliary graph in Section 3.1 and give the required
algorithm in Section 3.2.

3.1 The Auxiliary Graph H

Let G be an n × n layered grid graph. We denote the vertices in G as (i, j ), where 0 ≤ i, j ≤ n.
Without loss of generality, we can assume that s = (0, 0) and t = (n,n); otherwise, we preprocess
G to construct another layered grid graphG ′ in the following way: consider the subgraph ofG such
that s be the leftmost and the bottommost vertex and t be the rightmost and the topmost vertex of
that subgraph, and then form G ′ by adding a dummy path from (0, 0) to s and t to (n,n). It is easy
to see that the above preprocessing can be done in log-space. Let k be a parameter that determines
the number of pieces in which we divide G. We will fix the value of k later to optimize the time
and space bounds. Assume without loss of generality that k divides n. Given G, we construct an
auxiliary graph H as described below.

Divide G into k2 many blocks (will be defined shortly) of dimension n/k × n/k . More formally,
the vertex set of H is

V (H ) := {(i, j ) | i or j is a non-negative multiple of n/k }.
Note that V (H ) ⊆ V (G ) and |V (H ) | = 2(k + 1)n − (k + 1)2. We consider k2 many blocks G1,
G2, . . . ,Gk2 , where a vertex (i, j ) ∈ V (Gl ) if and only if i ′ n

k
≤ i ≤ (i ′ + 1) n

k
and j ′ n

k
≤ j ≤ (j ′ + 1) n

k
,

for some integer i ′ ≥ 0 and j ′ ≥ 0 and the vertices for which any of the four inequalities becomes
equality, will be referred to as boundary vertices. Moreover, we have l = i ′ · k + j ′ + 1. E (Gl ) is the
set of edges in G induced by the vertex set V (Gl ).

For every i ∈ [k + 1], let Lh (i ) and Lv (i ) denote the set of vertices, Lh (i ) := {(i ′, j ′) |j ′ = (i − 1) n

k
}

and Lv (i ) := {(i ′, j ′) |i ′ = (i − 1) n

k
}. When it is clear from the context, we will also use Lh (i ) and

Lv (i ) to refer to the corresponding gridline in H . Observe that H has k + 1 vertical gridlines and
k + 1 horizontal gridlines.

For every pair of vertices u,v ∈ V (Gl ) ∩V (H ) for some l , add the edge (u,v ) to E (H ) if and
only if there is a path from u to v in Gl , unless u,v ∈ Lv (i ) or u,v ∈ Lh (i ) for some i . Also,
for every pair of vertices u,v ∈ V (Gl ) for some l , such that u = (i1, j1) and v = (i2, j2), where
i1 = i2 = i

′ n
k

for some i ′ and j1 = j ′ n
k

, j2 = (j ′ + 1) n

k
for some j ′, or j1 = j2 = j ′ n

k
for some j ′ and
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Fig. 1. (a) An example of layered grid graphG and its decomposition into blocks. (b) Corresponding auxiliary

graph H .

i1 = i
′ n

k
, i2 = (i ′ + 1) n

k
for some i ′, we add an edge between u and v in the set E (H ) if and only if

there is a path from u to v in Gl and we call such vertices corner vertices.
Before proceeding further, let us introduce some notation that will be used later. For j ∈ [k], let

Lh (i, j ) denote the set of vertices in Lh (i ) in between Lv (j ) and Lv (j + 1). Similarly, we also define
Lv (i, j ) (see Figure 1). For two vertices x ,y ∈ Lv (i ), we say x ≺ y if x is below y in Lv (i ). For two
vertices x ,y ∈ Lh (i ), we say x ≺ y if x is right ofy in Lh (i ). Our algorithm (Algorithm 1) will ensure
that for any x ,y ∈ V (H ) reachable from s in H , if x ≺ y, then x will be traversed before y.

Lemma 3.2. There is a path from s to t in G if and only if there is path from s to t in the auxiliary

graph H .

Proof. As every edge (a,b) in H corresponds to a path from a to b inG, if-part is trivial to see.
Now for the only-if-part, consider a path P from s to t in G. P can be decomposed as P1P2 · · · Pr ,
such that Pi is a path from xi to xi+1, where xi is the first vertex on P that belongs to V (Gl ) and
xi+1 be the last vertex on P that also belongs toV (Gl ), for some l . In a layered grid graph, for such
xi and xi+1, we have only following two possibilities:

(1) xi and xi+1 belong to different horizontal or vertical gridlines; or
(2) xi and xi+1 are two corner vertices.

Now, by the construction H , for every i , there must be an edge (xi ,xi+1) in H for both the above
cases and, hence, there is a path from s to t in H as well. �

Now, we consider the case when two vertices x ,y ∈ V (H ) belong to the same vertical or hori-
zontal gridlines.

Claim 3.3. Let x and y be two vertices contained in either Lv (i ) or Lh (i ) for some i . Then, deciding

reachability between x and y in G can be done in log-space.

Proof. Let us consider that x ,y ∈ Lv (i ), for some i . As the graph G under consideration is a
layered grid graph, if there is a path between x and y, then it must pass through all the vertices in
Lv (i ) that lies in between x and y. Hence, just by exploring the path starting from x through Lv (i ),
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Fig. 2. The neighbors of x are traversed in the following order: v1, v2, v3, v4, v5.

we can check the reachability and it is easy to see that this can be done in log-space, because the
only thing we need to remember is the current vertex in the path. The same argument will also
work when x ,y ∈ Lh (i ), for some i , and this completes the proof. �

Now we argue on the upper bound of the length of any path in the auxiliary graph H . The idea
is to partition the set V (H ) into 2k + 1 partitions in such a way that any two consecutive vertices
on a path in H lie on two different partitions.

Lemma 3.4. Any path between s and t in H is of length 2k − 1.

Proof. Let us first define the sets D0,D1, . . . ,D2k−1 (e.g., shaded region in Figure 1(b) denotes
D1), where

Dl :=
{

(i, j ) |(i ′ − 1)
n

k
≤ i < i ′

n

k
, (j ′ − 1)

n

k
≤ j < j ′

n

k
and i ′ + j ′ = l + 1

}
.

Now consider D ′
l

:= Dl ∩V (H ) for 0 ≤ l ≤ 2k − 1. Clearly, D ′0,D
′
1, . . . ,D

′
2k−1 induce a partition on

V (H ). Now let us take any path s = x1x2 · · · xr = t , from s to t in H , denoted as P . Observe that by
the construction of H , for any two consecutive vertices xi and xi+1 for some i , if xi ∈ D ′l for some
l , then xi+1 ∈ D ′l+1 and s ∈ D ′0, t ∈ D ′2k−1. As a consequence, r = 2k and, hence, the length of the
path P is 2k − 1. �

3.2 Description of the Algorithm

We next give a modified version of DFS that, starting at a given vertex, visits the set of vertices
reachable from that vertex in the graph H . At every vertex, the traversal visits the set of outgoing
edges from that vertex in counter-clockwise order.

In our algorithm, we maintain two arrays of size k + 1 each, say Av and Ah , one for vertical and
the other for horizontal gridlines, respectively. For every i ∈ [k + 1], Av (i ) is the topmost visited
vertex in Lv (i ) and, analogously, Ah (i ) is the leftmost visited vertex in Lh (i ). This choice is guided
by the choice of traversal of our algorithm. More precisely, we cycle through the outgoing edges
of a vertex in counter-clockwise order (see Figure 2).

We perform a standard DFS-like procedure using the tape space to simulate a stack, say S .
S keeps track of the path taken to the current vertex from the starting vertex. By Lemma 3.4,
the maximum length of a path in H is at most 2k − 1. Whenever we visit a vertex in a vertical grid-
line (say Lv (i )), we check whether the vertex is lower than the i-th entry of Av . If so, we return to
the parent vertex and continue with its next child. Otherwise, we update the i-th entry of Av to be
the current vertex and proceed forward. Similarly, when we visit a horizontal gridline (say Lh (i )),
we check whether the current vertex is to the right of the i-th entry of Ah . If so, we return to the
parent vertex and continue with its next child. Otherwise, we update the i-th entry of Ah to be the
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19:8 D. Chakraborty and R. Tewari

current vertex and proceed. The reason for doing this is to avoid revisiting the subtree rooted at
the node of an already visited vertex. The algorithm is formally defined in Algorithm 1.

ALGORITHM 1: AlgoLGGR: Algorithm for Reachability in the Auxiliary Graph H

Input: The auxiliary graph H , two vertices s, t ∈ V (H )
Output: YES if there is a path from s to t ; otherwise NO
Initialize two arrays Av and Ah and a stack S ;

Initialize three variables curr , prev and next to NULL;

Push s onto S ;

while S is not empty do

curr ← top element of S ;

if prev � NULL then

next ← neighbor of curr following prev in counter-clockwise order;

else

next ← any neighbor of curr ;

end

while next � NULL do

/* cycles through neighbors of curr in counter-clockwise order */

if next = t then

return YES;

end

if next ∈ Lv (i ) for some i and (Av [i] ≺ next or Av [i] = NULL) then

Av [i]← next ;

break;

end

if next ∈ Lh (i ) for some i and (Ah[i] ≺ next or Ah[i] = NULL) then

Ah[i]← next ;

break;

end

prev ← next ;

next ← neighbor of curr following prev in counter-clockwise order;

/* NULL if no more neighbors are present */

end

if next = NULL then

remove curr from S ;

prev ← curr ;

else

add next to S ;

prev ← NULL;

end

end

return NO;

Lemma 3.5. Let Gl be some block and let x and y be two vertices on the boundary of Gl such that

there is a path from x to y in G. Let x ′ and y ′ be two other boundary vertices in Gl such that (i) there

is a path from x ′ to y ′ in G and (ii) x ′ lies on one segment of the boundary of Gl between vertices x
and y and y ′ lies on the other segment of the boundary. Then, there is a path in G from x to y ′ and

from x ′ to y. Hence, if (x ,y) and (x ′,y ′) are present in E (H ), then so are (x ,y ′) and (x ′,y).
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Fig. 3. Crossing between two paths.

Proof. Since G is a layered grid graph, then the paths x to y and x ′ to y ′ must lie inside Gl .
Also, because of planarity, the paths must intersect at some vertex in Gl . Now using this point of
intersection, we can easily show the existence of paths from x to y ′ and from x ′ to y. �

The following lemma will help us to prove the correctness of Algorithm 1.

Lemma 3.6. Let u and v be two vertices in H . Then, starting at u, Algorithm 1 visits v if and only

if v is reachable from u in H .

Proof. It is easy to see that every vertex visited by the algorithm is reachable from u since the
algorithm proceeds along the edges of H .

By induction on the shortest path length to a vertex, we will show that if a vertex is reachable
from u, then the algorithm visits that vertex. Let Bd (u) be the set of vertices reachable from u that
are at a distance d from u. Assume that the algorithm visits every vertex in Bd−1 (u). Let x be a
vertex in Bd (u). Without loss of generality, assume that x is in Lv (i, j ) for some i and j. A similar
argument can be given if x belongs to a horizontal gridline. Further, let x lie on the right boundary
of a block Gl . LetWx = {w ∈ Bd−1 (u) |(w,x ) ∈ E (H )}. Note that by the definition of H , all vertices
inWx lie on the bottom boundary or on the left boundary of Gl .

Suppose the algorithm does not visit x . Since x is reachable from u via a path of length d ,
therefore, Wx is non-empty. Let w be the first vertex added to Wx by the algorithm. Then, w is
either in Lh (j ) or in Lv (i − 1). Without loss of generality, assume w is in Lh (j ). Let z be the value
in Av (i ) at this stage of the algorithm (that is when w is the current vertex). Since x is not visited,
x ≺ z. Also, this implies that z was visited by the algorithm at an earlier stage of the algorithm.
Let w ′ be the ancestor of z in the DFS tree such that w ′ is in Lh (j ). There must exist such a vertex
because z is above the j-th horizontal gridline, that is Lh (j ).

Suppose if w ′ lies to the left of w , then by the description of the algorithm, w is visited before
w ′. Hence, x is visited before z. On the other hand, suppose w ′ lies to the right of w . Clearly, w ′

cannot lie to the right of vertical gridline Lv (i ) since z is reachable from w ′ and z is in Lv (i ). Let
w ′′ be the vertex in Lh (j + 1) such that w ′′ lies in the tree path between w ′ and z (see Figure 3).
Observe that all four vertices lie on the boundary of Gl . Now, by applying Lemma 3.5 to the four
vertices w , x , w ′, and w ′′, we conclude that there exists a path from w ′ to x as well. Since x ≺ z,
x must have been visited before z from the vertex w ′. In both cases, we see that z cannot be
Av (i ) when w is the current vertex. Since z was an arbitrary vertex such that x ≺ z, the lemma
follows. �

Our next lemma will help us to achieve a polynomial bound on the running time of Algorithm 1.

Lemma 3.7. Every vertex in the graph H is added to the set S at most once in Algorithm 1.
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Proof. Observe that a vertex u in Lv (i ) is added to S only if Av (i ) ≺ u, and once u is added,
Av (i ) is set to u. Also, during subsequent stages of the algorithm, if Av (i ) is set to v , then u ≺ v .
Hence, u ≺ Av (i ). Therefore, u cannot be added to S again.

We give a similar argument if u is in Lh (i ). Suppose if u is in Lv (i ) for some i and Lh (j ) for some
j, then we add u only once to S . This check is done in Line 16 of Algorithm 1. However, we update
both Av (i ) and Ah (j ). �

One can observe that Algorithm 1 does not need to explicitly compute or store the graph H .
Whenever it is queried for an edge (x ,y) in H , it recursively runs a reachability query in the
corresponding sub-grid graph ofG such that x is in the bottom left corner and y is in the top right
corner of that sub grid graph and produces an answer. The base case is when a query is made to
a grid graph of size k × k . For the base case, we run a standard DFS procedure on the k × k size
graph.

In every iteration of the outer while loop (Lines 4–29) of Algorithm 1, either an element is added
or an element is removed from S . Since |V (H ) | < 2(k + 1)n, by Lemma 3.7, the outer while loop
iterates at most 5nk times. The inner while loop (Lines 7–21) cycles through all the neighbors of
a vertex, which is bounded by 2n/k and, hence, iterates for at most 2n/k times. Each iteration of
the inner while loop makes a constant number of calls to check the presence of an edge in an
n/k × n/k sized grid. Let T (n) and S (n) be the time and space required to decide reachability in a
layered grid graph of size n × n, respectively. Then,

T (n) =

{
10n2 (T (n/k ) +O (1)) if n > k
O (k2) otherwise.

Hence, T (n) = O (n3
log n

log k ).
Since we do not store any query made to the smaller grids, the space required to check the

presence of an edge in H can be reused. Av and Ah are arrays of size k + 1 each. By Lemma 3.4,
the number of elements in S at any stage of the algorithm is bounded by 2k − 1. Thus, to store Av ,
Ah , and S , our algorithm needs total ( |Av | + |Ah | + |S |) logn = O (k logn) space. Therefore,

S (n) =

{
S (n/k ) +O (k logn) if n > k
O (k2) otherwise.

Hence, S (n) = O ( k

log k
log2 n + k2).

Now, given any constant ϵ > 0, if we set k = nϵ/2, then we get T (n) = O (n6/ϵ ) and S (n) =
O (nϵ ). This proves Theorem 3.1.
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