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Abstract
A graph separator is a subset of vertices of a graph whose removal divides the graph into small
components. Computing small graph separators for various classes of graphs is an important computa-
tional task. In this paper, we present a polynomial-time algorithm that uses O(g1/2n1/2 log n)-space
to find an O(g1/2n1/2)-sized separator of a graph having n vertices and embedded on an orientable
surface of genus g.
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1 Introduction

Graph separator is a valuable tool in designing divide and conquer based algorithms for
various graph problems. In a graph, a separator is a small set of vertices of the graph whose
removal divides the graph into pieces such that the size of each piece is at most a fraction of
the original graph. Lipton and Tarjan’s pioneering result showed that there exists a separator
of size O(n1/2) in planar graphs [12]. Subsequently, this separator was used to design many
algorithms to solve various problems in planar graphs.

Recently, researchers have been interested in designing memory-constrained algorithms
for various graph problems. They aim to optimize the space required by the algorithm while
maintaining the polynomial time-bound. Graph separators have been used in designing
memory-constrained algorithms for the reachability problem. Imai et al. and Ashida et al.
presented polynomial-time algorithms that use O(n1/2 log n) space to find a separator of size
O(n1/2) in a planar graph [9, 3]. Imai et al. also gave a memory-constrained algorithm to
solve the reachability problem using this separator [9]. A natural extension of planar graphs
is the set of graphs that we can embed on a surface of constant genus. For such graphs, we
know that a separator of size O(n1/2) exists. Chakraborty et al. gave a polynomial-time
algorithm which uses O(n2/3 log n) space to construct a separator of size O(n2/3) in constant
genus graphs [4].
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Jain and Tewari formalized the connection between separators in a class of undirected
graphs and the reachability problem in the class of directed versions of those graphs [10].
They mainly show that if there exists a polynomial-time algorithm that uses O(w log n)-space
to find a separator of size O(w), then there exists a polynomial-time algorithm that uses
O(w log n) space to solve reachability as well.

In this paper, we continue along the above line of work and present a polynomial-time
algorithm that uses O(g1/2n1/2 log n) space to construct a separator of size O(g1/2n1/2) in a
g-genus graph. Therefore, combining this construction with [10], we get a polynomial-time
algorithm that uses O(g1/2n1/2 log n) space to solve the reachability problem in g-genus
graphs. Thus, for constant genus graphs, our approach gives a polynomial-time algorithm
that uses O(n1/2 log n) space.

Our separator construction follows the standard paradigm used in previous constructions
of separators for planar graphs and surface-embedded graphs. Hence some familiarity with
earlier results such as those shown by Gazit and Miller [7], Koutis and Miller [11], Imai
et al. [9], Ashida et al. [3], and Chakraborty et al. [4] is beneficial in understanding our
construction. In particular, since our result is a generalization of Ashida et al. [3], we heavily
borrow their framework.

Our Result

In this paper, we prove the following theorem.

▶ Theorem 1. There exists a polynomial-time algorithm that takes as an input a graph G

on n vertices along with its combinatorial embedding of genus g and outputs its separator of
size O(g1/2n1/2). This algorithm uses O(g1/2n1/2 log n) space.

The running time of our algorithm is a polynomial in both the number of vertices n and
the value of the genus g. To achieve the desired space-time bounds, given a graph G, we
first find a maximal set of vertices in G whose k-neighbourhoods do not intersect each other.
We call the vertices in this set Boss vertices. We associate each vertex of the graph to one
of the Boss vertices. We call the set of vertices associated with the same Boss vertex a
Voronoi region. If a non-contractible cycle of length O(k) in the graph spans at most two of
these Voronoi regions, we find that cycle and remove it from the graph. Removal of such a
non-contractible cycle from the graph reduces its genus by at least one. Otherwise, if there
exists no such cycle, we proceed by dividing the original graph further into a total of at most
O(n/k + g) regions so that each of them is bounded by a simple cycle of length O(

√
k) and

the number of vertices present inside each region is at most n/3. We then use these regions
to construct a Frame Graph, which is the graph induced by the vertices on these cycles. We
assign weights to each face of the frame graph such that the weight of a face is equal to the
number of vertices of the original graph inside the corresponding cycle. While constructing
the frame graph, we might encounter some properties of the original graph, which allows us
to output either a separator or a non-contractible cycle of size O(k). Thus, in the end, we
either have a non-contractible cycle of size O(k), a small separator or the frame graph. If
the result is a separator, then we output that separator. If the result is a non-contractible
cycle C, we store it and restart the algorithm with the graph G \ C as the input. The final
output will be the union of C with the separator of G \ C. If the result is the frame graph,
we use the algorithm of Gilbert et al. [8] to find a separator. For an appropriate value of k,
our algorithm achieves the desired time and space bound.
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Comparison with the previous result
The construction of separator by Chakraborty et al. [4] proceeds (roughly) as follows: Given
a graph G they first find a subgraph H of the graph G, such that removal of vertices of
H from G makes the resulting graph G \ H planar. Subsequently, they obtain a separator
of G \ H using the algorithm of Imai et al. [9] and add it to the vertices of H to get a
separator of the graph G. The subgraph H obtained in Chakraborty et al. [4] might not be a
connected subgraph of G. We find a smaller separator by first finding a 2-connected weighted
subgraph of G such that a weight-separator of this weighted subgraph acts as a separator
of the original graph. We find this 2-connected subgraph by using Ridge edges which was
previously used by Gazit and Miller [7], and Ashida et al. [3] for the case of planar graphs.
We show that by first efficiently removing non-contractible cycles from Voronoi regions, ridge
edges can be used in graphs of a higher genus. We call this 2-connected subgraph a Frame
graph. We then show that a weight-separator for this Frame graph can be found efficiently
and hence get our result.

Organization of the Paper
The rest of the paper is organized as follows. In section 2, we give some preliminary notations
and definitions. We first divide the graph into Voronoi regions. We explain this procedure
in section 3. We further divide Voronoi regions by using pre-frame-loops in section 3.1. In
section 4, we show how to process the pre-frame-loops and construct a frame graph and then
make floor modifications and ceiling modifications in this frame graph. We thus get the
required subgraph. Finally, in section 5, we put it all together to construct the separator.

2 Preliminaries

A graph is an ordered triple G = (V (G), E(G), ∂) where V (G) is the set of vertices, E(G) is
the set of edges and ∂ is a function that assigns to each edge a pair of vertices. Let p be a
path. We use first(p) to denote the first edge of p and last(p) to denote the last edge of p. In
an undirected graph G, it is helpful to regard each edge in E as a pair of directed edges, or
darts. Each dart goes from one vertex, called its tail, to another vertex, called its head. For
a dart e, we use tail(e) to denote the tail of the dart, and similarly, we use head(e) to denote
the head of the dart. The two darts that results from a single undirected edge are said to
be reverse of each other. If two darts e1 and e2 are reverse of each other, we denote e2 by
rev(e1) and e1 by rev(e2).

The genus of a surface Σ is the maximum number of non-intersecting simple closed curves
in Σ such that the surface remains connected after cutting along these curves. The genus of
a graph G is the smallest g such that G can be embedded on a surface of genus g. A surface
is called orientable if it has two distinct sides; else, it is called non-orientable. In this paper,
we only consider graphs that can be embedded on an orientable surface. Let G be a graph
embedded on a surface S of genus g. The faces of the embedding of G are the connected
components of S \ G. If a face is homeomorphic to an open disk, it is called a 2-cell. If
every face is homeomorphic to an open disk, the embedding is called a 2-cell embedding. A
combinatorial embedding of G is defined as π = {πv | v ∈ V (G)} where for each vertex v, πv

is a cyclic permutation of darts whose tail is v. This permutation of darts goes clockwise as
per the embedding on the surface. For a dart e, we use left(e) to denote the face which is on
the left of e and right(e) to denote the face on the right of e. A triangulated graph is a graph
that is embedded on a surface such that every face is a 2-cell and has three boundary edges.

FSTTCS 2021
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We define a dual graph G̃ of G for an embedding in the following way: G̃ contains a
vertex ṽ corresponding to every face of G and two vertices of G̃ have an edge between them
if their corresponding faces share an edge in G. We say that an edge ẽ of G̃ crosses an edge
e of G if the faces at the endpoints of ẽ shares the edge e of G.

Let G be a graph embedded on a surface of genus g. Let U be a subset of vertices of
G, F be a subset of edges of G, and R be a subset of faces of G. Then G[U ] denotes the
subgraph of G, induced by the vertices in the set U . Similarly, G[F ] denotes the subgraph
of G, containing all the edges of F together with their endpoints. By G[R], we denote the
graph containing all the vertices and edges in the boundary of a face in R.

Let G be a graph of genus g. A set R of its faces is a region if G̃[R] is connected. The
set of edges of G whose only one side has a face in R is called the boundary of R.

If G is a graph embedded on a surface and c is a cycle in G, then we define the left graph
and right graph of c as follows: If e is a dart of c followed by e′ = πk

head(e)(rev(e)), then all
edges πhead(e)(rev(e)), π2

head(e)(rev(e)), . . . , πk−1
head(e)(rev(e)) are said to be on the left side of c.

An edge e′′ which is not incident with c and which is connected by a path in G \ c to an end
of an edge of the left side of c is also said to be on the left side. Now the left graph of c is
defined as the edges on the left side of c together with all their ends. The right graph G is
defined analogously. We will often use the term inside of c to denote the left graph of c and
outside of c to denote the right graph of c. We do not include the cycle c itself in either of
these sides.

▶ Definition 2. A cycle c of a surface embedded graph G is called a contractible cycle
if and only if one of the sides of c is planar. A cycle that is not contractible is called a
non-contractible cycle.

We say that a set C of cycles satisfies the 3-path-condition if the following property holds:
If u and v are vertices of G and P1, P2 and P3 are internally vertex disjoint paths from u

to v. If two of the cycles Ci,j = Pi ∪ Pj(1 ≤ i < j ≤ 3) are not in C then the third one is
also not in C. It is a well known fact that the set of non-contractible cycles satisfies the
3-path-condition [15].

We define dist(u, v) to be the length of the shortest path between two vertices u and v.
We introduce a total order (denoted by <v) in the vertex set V of the graph based on the
distance from v. For any vertices u and w, we say that u is nearer to v than w (written as
u <v w) if we have either

dist(u, v) < dist(w, v) or
dist(u, v) = dist(w, v) and u has a smaller index than w

For any set W of vertices of G, nrstv(W ) denotes a vertex u in W such that u <v w of all
w ∈ W \{u}. For any sets W and W ′ of vertices, we write W <v W ′ if nrstv(W ) <v nrstv(W ′).

Let G be a graph of genus g. A closed loop c is a sequence of distinct darts e1, e2, . . . , em

of G such that head(ei) = tail(e(i+1) mod m).

▶ Definition 3. Let G be a weighted-graph with positive integral weights on each vertex that
sums to n and α ∈ (0, 1). An α-separator of G is a set S of vertices of G such that the
removal of S creates disconnected subgraphs, each of which has at most αn weight, where the
weight of a subgraph is the sum of the weights of the vertices in it.

We use a multitape Turing machine model to discuss the space-bounded polynomial-time
algorithms. A multi-tape Turing machine consists of a read-only input tape, a write-only
output tape, and a constant number of work tapes. We measure the space complexity of a
multitape Turing machine by the total number of bits used in the work tapes.
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We note that Allender and Mahajan [2] showed that the problem of testing whether a
graph is planar or not is in SL. They also gave the SL algorithm to construct the planar
embedding. Subsequently, Reingold [14] showed that SL = L hence there exists a logspace
algorithm to test if a graph is planar and also produce its embedding. We summarize this
fact in the following Lemma.

▶ Lemma 4. There exists a logspace algorithm that tests whether the input graph is planar
and if so, it outputs an embedding of the input graph.

Gilbert, Hutchinson and Tarjan proved the existence of an O(n1/2g1/2) size separator
for the graphs of genus g [8]. They also presented an O(n + g) time algorithm to find the
separator. Therefore we can conclude that their algorithm runs in O((n + g) log n) space.
We can thus use the following Lemma for our result.

▶ Lemma 5. There exists a polynomial-time algorithm that takes, as an input, an n-vertex
graph of genus g along with its combinatorial embedding and finds its separator of size
O(n1/2g1/2) using O((n + g) log n) space.

We will need the notion of fundamental cycles in our separator construction; therefore,
we define it formally.

▶ Definition 6. Let G be a graph and T be a spanning tree of G. Let e be an edge that does
not belong to T . A simple cycle c, which consists of e and the path in T joining the endpoints
of e, is called a fundamental cycle.

3 Voronoi Region

As we discussed in section 1, we start by dividing the input graph into something that
we call Voronoi regions. In this section, we define the notion of Voronoi Regions and explain
how they could be constructed in a space-efficient manner. This notion has been previously
used in designing a separator for planar graphs by Imai et al., Ashida et al., Gazit and Miller,
and Koutis and Miller [9, 3, 7, 11].

We first define the k-neighbourhood of a vertex. This is a key tool that will help us define
and construct a Voronoi region.

▶ Definition 7. Let G be a graph and v be a vertex of G. Let L(v, i) be the set of vertices at
distance i from v. The k-neighbourhood Nk(v) of a vertex v is defined as:

Nk(v) =
⋃

1≤i≤d

L(v, i)

where d is the smallest integer such that |
⋃

1≤i≤d L(v, i)| ≥ k.

Note that we have defined k-neighbourhood in a slightly different way when compared to
the definition of Imai et al. [9] and Chakraborty et al. [5]. In their work, Nk(v) is chosen
to contain at most k vertices, while here, it contains at least k vertices. We believe this
definition makes our proof simpler to follow.

▶ Definition 8. Let G be a graph. A set I of vertices of G is called a k-maximal independent
set if the following holds:

For every b1, b2 ∈ I, Nk(b1) ∩ Nk(b2) = ∅.
For every v that is not in I, we have a vertex b ∈ I such that Nk(v) ∩ Nk(b) ̸= ∅.

FSTTCS 2021
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▶ Lemma 9. There exists an O((k + n/k) log n)-space and polynomial-time algorithm that
takes a graph G as input and outputs a k-maximal independent set I.

The proof of the above Lemma is quite straightforward. We refer readers to [9, 4].
For a graph G, we will use the notation ind(G) to denote the set returned by the algorithm
of Lemma 9.

▶ Definition 10. Let G be a graph. For any vertex v, the boss-vertex of v is a vertex b of
ind(G) such that Nk(b) <v Nk(b′), for all b′ ∈ ind(G) \ {b}. We define vor(b) to be the set of
all vertices whose boss-vertex is b. We use boss(v) to denote the boss-vertex of v.

Note that the graph induced by the vertices in the set vor(b) form a connected component
in G. Therefore, the faces corresponding to these vertices form a region in G̃. We will
henceforth call vor(b) the Voronoi region of b.

We note that while the Voronoi region of a vertex b can be large, its diameter is O(k).
We will now show that the BFS-tree of this Voronoi region can still be constructed in
O((n/k + k) log n) space and polynomial time. To construct a rooted tree using small space,
it suffices to show an algorithm to determine the parent of a given vertex v ∈ vor(b) in the
BFS tree. The algorithm is the following: To determine the parent of a vertex v in vor(b),
we first construct the BFS-tree T of k-neighbourhood of b. If v ∈ Nk(b) then the parent of v

is the same as its parent in T . Otherwise, construct the BFS-tree of Nk(v). Let v′ be the
vertex in Nk(v) ∩ Nk(b) such that dist(b, v′) is minimum. Break ties by picking the one with
a smaller index. Consider the path from v to v′ in the BFS tree of Nk(v). The parent of v is
the vertex adjacent to v in this path. We summarize in the following Lemma.

▶ Lemma 11. Let G be a graph and b be a vertex of ind(G). There exists a polynomial time
algorithm that constructs the BFS-tree of vor(b) in O((k + n/k) log n) space.

A similar lemma was observed for planar graphs by Imai et al. [9]
The input graph might contain small non-contractible cycles. We require that the union

of any two Voronoi regions do not have a non-contractible cycle, similarly as Chakraborty et
al. [4]. Thus, we remove such non-contractible cycles from the graph using the following
Lemma in our main algorithm.

▶ Lemma 12 ([4]). There is an O((k + n/k) log n)-space and polynomial time algorithm that
takes a graph G, and two boss-vertices b1 and b2 as input and checks for a non-contractible
cycle of size O(k) in vor(b1) ∪ vor(b2). The algorithm outputs one such cycle if it exists.

Proof. First, consider the case when vor(b1) ∪ vor(b2) forms a connected subgraph of G. We
know that vor(b1) and vor(b2) can be computed in O((k + n/k) log n) space and polynomial
time by Lemma 11. We combine the BFS-trees of vor(b1) and vor(b2) using an arbitrary edge
to get a spanning tree of vor(b1) ∪ vor(b2) with diameter O(k). We denote this spanning tree
as T . Note that T can be computed in polynomial-time and O((n/k + k) log n) space. We
know that the set of all non-contractible cycles of any graph G satisfy 3-path condition [15].
Since the diameter of T is O(k), any fundamental cycle of this tree of size O(k). The 3-path
condition implies that if a non-contractible cycle exists, then one of the fundamental cycles
is non-contractible (see Allender et al. 2005, Lemma 5.1 [1]). We can check whether a cycle
is contractible by checking the planarity of the left and the right sides of the cycle. The left
and the right side of a given cycle can be computed in logspace by using reachability queries
[14]. Therefore, by Lemma 4, we can check if a cycle is contractable in O(log n) space. Thus,
the lemma follows. In the other case where vor(b1) and vor(b1) are not connected, we can
apply the same procedure on spanning trees of vor(b1) and vor(b2) separately. ◀
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b

Figure 1 A diagram showing vor(b) for a boss vertex b. The part of the surface where the vertices
of vor(b) are present is shown in grey colour. The boundary of the Voronoi region is shown using
thick solid lines. The ridge edges are shown using normal solid lines. Dashed lines show some of the
edges of the spanning tree of vor(b). Dotted lines show faces in G that corresponds to a vertex v,
which is an endpoint of a ridge edge in G̃.

As mentioned in the introduction, we will use the Voronoi regions to construct our Frame
graph. For this construction, we first divide the Voronoi Regions.

3.1 Dividing Voronoi Regions using Pre-Frame-Loops
In this subsection, we find a set of loops in the input graph G. Each of these loops contains

vertices of at most two Voronoi regions inside them. We then further process these loops so
that the number of vertices inside them is small.

Let G be a triangulated graph of genus g. Note that any connected component of G

forms a region in G̃. Also, note that since the size of each face of G is three, all the vertices
of the graph G̃ will have degree three. Thus, a region of faces in G̃ will have a boundary
that is a set of vertex-disjoint simple cycles.

We require two kinds of edges in the dual graph to construct the desired loops. One is
the set of the boundary edges of all the Voronoi regions, and the other is the set of Ridge
edges. Ridge edges have been used previously by Gazit and Miller [7] and Ashida et al. [3].
We define them as follows.

▶ Definition 13. Let G be a graph and b be a boss-vertex. Let T be the BFS tree of vor(b).
For an edge e of G[vor(b)] that does not belong to T , let ce be the fundamental cycle induced
by e on T . If each of the two sides of the cycle ce contains at least one boundary cycle of
vor(b), then the edge ẽ of G̃ crossing e is called a ridge edge.

Figure 1 shows ridge edges in the Voronoi region of a boss vertex b.

▶ Definition 14. Let G be a graph of genus g. Let B̃ be the set of boundary edges of vor(b) for
all boss vertices b. Similarly, let R̃ be the set of ridge-edges. A branch vertex is a degree three
vertex in the graph G̃[B̃ ∪ R̃]. For each branch vertex ṽ, the boundary of the face consisting
of three vertices incident to ṽ is a branch-triangle. Two branch vertices are called adjacent
to each other if a path connects them consists of darts corresponding to the edges in the set
B̃ ∪ R̃ such that no other branch vertex exists on this path. The path connecting adjacent
branch vertices is called a connector. We denote the set of connectors in G̃ by con(G).

FSTTCS 2021
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Let p̃ be a connector. Note that the end points of p̃ are an adjacent pair of branch vertices.
Also note that, boss(left(first(p))) is same as boss(left(last(p))) and boss(right(first(p))) is
same as boss(right(last(p))). We define a pre-frame-loop with respect to p̃ as follow.

▶ Definition 15. Let G be a graph embedded on a surface of genus g. For any connector p̃,
a pre-frame-loop (denoted by pfloop(p̃)) is a closed loop that consists of
1. A path from right(first(p)) to boss(right(first(p))) in the BFS-tree of vor(boss(right(first(p))))
2. A path from boss(right(first(p))) to right(last(p)) in the BFS-tree of vor(boss(right(first(p))))
3. A branch-triangle dart elast from right(last(p)) to left(last(p))
4. A path from left(last(p)) to boss(left(last(p))) in the BFS-tree of vor(boss(left(last(p)))).
5. A path from boss(left(last(p))) to left(first(p)) in the BFS-tree of vor(boss(left(last(p)))).
6. A branch-triangle dart efst from left(first(p)) to right(first(p)).

We denote the set of all the pre-frame-loop in G as pfloop(G)

The proof of the following lemma is straightforward.

▶ Lemma 16. There exists an O((k + n/k) log n)-space and polynomial-time algorithm that
takes G as an input and outputs the list pfloop(G) of all pre-frame-loops in G.

In the next section, we will use these pre-frame loops to create faces of our subgraph.
Following Ashida et al. [3], we call this new graph Frame Graph.

4 Frame Graph

We wish to use pre-frame-loops to create faces of the frame graph. In order to do this, we
first preprocess these loops so that the inside of each loop is small, i.e., has at most n/3
vertices in it. This preprocessing would ensure that the weight on any face of the frame
graph is bounded. In the second step, we remove those edges of the loop for which both of
its darts are traversed and thus break the loop into simple cycles. These cycles will act as
boundaries of the faces in the frame graph.

Consider a connector p̃ of the input graph G and the pre-frame-loop c induced by p̃. Note
that c is in the union of two Voronoi regions. Since we have eliminated all non-contractible
cycles from the union of any two Voronoi regions, c cannot contain a non-contractible cycle.
Thus, c divides the surface. A pre-frame loop is of type A if it consists of two boss vertices,
and it is of type B if it consists of only one boss vertex (see Figure 2).

Let the part of a connector p̃ excluding its first and last vertex be called the body of p̃.
Let P0 denote the surface of G \ c that has the body of the connector p̃. Call this inside of c.
Let n0 be the number of vertices in P0 not including the vertices of c. We say that the inside
of c is large if n0 is greater than 2n/3. Note that the inside of c is included in the union of
atmost two Voronoi regions. Let b1 and b2 be the boss vertices of these two regions. We
use the BFS-Trees of vor(b1) and vor(b2) to find a spanning tree of vor(b1) ∪ vor(b2). Since
vor(b1) ∪ vor(b2) does not have a non-contractible cycle, it has a planar embedding. Consider
a spanning tree T of vor(b1) ∪ vor(b2). There exists a fundamental cycle of this tree in the
triangulated version of the graph G[vor(b1) ∪ vor(b2)] which acts as its separator [12]. Since
by removing the boundary of the pre-frame loop from the graph, we can get components, the
largest of which is formed by the vertices vor(b1) ∪ vor(b2), we can combine the separator of
G[vor(b1) ∪ vor(b2)] with the boundary of the pre-frame-loop to get a separator of the whole
graph G. Since the length of the boundary of pre-frame-loop is O(k) and the diameter of
Voronoi region of any boss vertex is O(k), we get the following lemma:
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p̃ p̃

b1

b2

b1

P0

P1

P1,1 P1,2

P0

Type BType A

Figure 2 On the left, a pre-frame-loop of type A. The two boss vertices corresponding to the
loop are b1 and b2. On the right, a pre-frame-loop of type B. The only boss vertex corresponding to
this loop is b1.

▶ Lemma 17. Let G be a graph of genus g which contains a pre-frame loop whose inside
is large. There exists a polynomial-time algorithm that takes as an input G and outputs a
separator of G of size O(k) in O((k + n/k) log n) space.

Thus, if any of the pre-frame-loop acts as a separator or has a large inside, we can get a
separator of the graph G. Otherwise, we construct a set C in the following way: We first
add all the pre-frame-loop of type A into C. Note that if a pre-frame-loop c is of type B, it
divides the surface into three parts. Call the two parts of the surface, which does not contain
the body of the connector, P1,1 and P1,2 respectively. Let the number of vertices in P0, P1,1
and P1,2 be n0, n1,1 and n1,2 respectively. We see that either n1,1 > 2n/3 or n1,2 > 2n/3, for
otherwise, our pre-frame-loop acts as a separator. Let us assume, without loss of generality,
that n1,2 > 2n/3. We merge P0 and P1,1 into a single surface, and add the loop c0 bounding
this surface to the set C. The inside of c0 is the side containing the surfaces P0 and P1,1.

Now, consider a loop c of C, that is not contained in the inside of any other loop c of C.
Let Ec be the set of darts whose reverse does not appear in c. Let E be the union of Ec

over all such c. We observe that E is a set of simple cycles, which we call frame-cycles and
denote by fcycle(G).

4.1 Definition and construction of Frame Graph
▶ Definition 18. Let G be a graph of genus g. Let E1 be the set of all frame-cycles edges, and
let E2 be the set of all branch-triangle edges. A frame-graph of G is a subgraph H = G[E1∪E2].
For each face of a frame-graph H, its weight is the number of vertices of G located inside
that face. We denote the frame graph of G by frame(G).

▶ Definition 19. Let G be a triangulated graph. Let L(v, i) be the set of vertices at distance
i from v. Let dnb(v) be the largest d such that |∪0≤i≤dL(v, i)| < k. For any boss-vertex
b ∈ ind(G), let dcore(b) denote the largest d ≤ dnb(b) such that |L(b, d)| ≤ k1/2. The core of
b (denoted by core(b)) is defined by

core(b) =
⋃

0≤i≤dcore(b)

L(b, i)
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Note that core(b) forms a region in G̃. The boundary of this region might not be a single
cycle. In the next definition, we pick one of these cycles to be the core boundary-cycle and
use it to construct the core cycle in the graph G.

▶ Definition 20. Let G be a triangulated graph of genus g and b be a boss-vertex. The
core-boundary-cycle of b is the boundary cycle of the region core(b) in G̃ that has the largest
number of dual-vertices on its outside.

The core-cycle of core(b) is a directed cycle induced by the set of vertices in core(b)
sharing an edge with the core boundary cycle. The inside of the core-cycle is the side with
the boss-vertex b.

For any l ≥ 1, let Lnb(l) denote a set of vertices v of G whose distance from its nearest
k-neighborhood in {Nk(b)}b∈ind(G) is l. More formally,

Lnb(l) = {v | dist(v, vnrst) = l, where vnrst = nrstv(Nk(boss(v)))}.

Let L̃nb(l) denotes the set of faces in G̃ corresponding to the vertices in the set Lnb(l).
Let C be a region of L̃nb(l). Each boundary edge of C is an edge between a pair of vertices
of level either l − 1 and l or l and l + 1. Let us call the former one an interior edge and the
latter one an exterior edge. We call a boundary cycle an interior boundary cycle if it consists
of interior edges. Similarly, we call a boundary cycle an exterior boundary cycle if it consists
of exterior edges.

▶ Definition 21. Let c̃ be any interior boundary cycle corresponding to Lnb(l). Let c be the
loop in C formed by the set of vertices sharing a boundary edge with c̃, and let Dc be the set
of cycles obtained from c by removing all the darts in the loop whose reverse also appears in
the loop. An interior-cycle is a cycle in Dc.

We define an exterior-cycle in a similar way. A cycle is said to be a small cycle if it
consists of at most k1/2 vertices. We denote the set of small interior cycles by smint(G) and
the set of small exterior cycles by smext(G). A contractible cycle is said to be light if it has
less than n/3 vertices in its inside.

▶ Definition 22. A floor cycle is a light and small interior cycle if it is not inside any other
light and small interior cycle. For any boss-vertex b which is not contained in any floor-cycle,
we regard the core-cycle of core(b) also as a floor-cycle. A ceiling-cycle is a light and small
exterior cycle that is not inside any other light and small exterior-cycle, and that has at least
one dual-vertex of some branch-triangle on its inside.

▶ Definition 23. Let G be a graph of genus g. Let F and C be respectively a set of floor-cycles
and ceiling-cycles having at least one vertex of frame(G) in their insides. Let E′

1 be the set of
edges of G that appear in some cycle in F ∪ C and E′

2 be the set of edges of frame(G) that are
not in the inside of any cycle of F ∪ C. A graph with vertices U ′ and edges D′ is a modified
frame-graph denoted as mframe(G), where D′ = E′

1 ∪ E′
2 and U ′ is the set of all vertices that

are endpoints of edges of D′. For each face of a modified frame-graph mframe(G), its weight
is the number of vertices of G located in the face.

The following Lemma is a generalization of a result that was presented by Ashida et
al. [3]. They presented a similar lemma for planar graphs. The proof of the following Lemma
has been moved to Appendix.

▶ Lemma 24. Let G be a graph of genus g such that voronoi region vor(b1) ∪ vor(b2) does
not contain a non-contractible cycle for any two vertices b1, b2 ∈ ind(G), pfloop(p̃) is not a
separator of G for any connector p̃, the inside of any loop in pfloop(p̃) is not large, core(b)
is not a separator of G for any boss-vertex b, and no cycle in smext(G) or smint(G) is a
non-contractible cycle. Following statements hold:
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1. The weight of each face of mframe(G) is less than n/3.
2. mframe(G) is 2-connected.
3. Size of each face of mframe(G) is O(k1/2).
4. The number of faces in mframe(G) is O(n/k + g)

5 Construction of separator

Using the tools developed so far, we can obtain a space-efficient algorithm which, given a
graph G as input, outputs either a separator, a non-contractible cycle or the modified frame
graph mframe(G). We summarize this in the following Lemma.

▶ Lemma 25. Let G be a g-genus triangulated graph of n vertices. For any positive integer
k, there is a polynomial time, O((n/k + k) log n)-space algorithm that takes G along with its
combinatorial embedding as input and outputs one of the following:
1. A non-contractible cycle of size O(k) of G.
2. A separator of size O(k) of G.
3. A a weighted subgraph H ′ of G that satisfies the following conditions:

a. The weight of each face f of H ′ is proportional to the number nf of vertices of G

located inside the face, and is less than n/3
b. H ′ is 2-connected.
c. H ′ contains O(n/k + g) faces.
d. The size of each face of H ′ is O(k1/2).

Proof. We first find a k-maximal independent set ind(G) of G in O((n/k+k) log n)-space and
polynomial time using lemma 9. We then check for a non-contractible cycle in vor(bi)∪vor(bj)
for all pairs of boss-vertices bi and bj using lemma 12. If we manage to find such a cycle,
we output it. Otherwise, we pick each pre-frame loops using lemma 16 see if it acts as a
separator of the graph. If so, we output it.

If the algorithm has not produced an output so far, we see if the inside of any pre-frame-
loop is large. If so, we use lemma 17 to find a separator of the graph. For every boss vertex
b, we check if core(b) is a separator. If so, we output it. Next, we check if any cycle in
smext(G) or smint(G) is a non-contractible cycle. If so, we output it. Otherwise, we output
the modified frame graph mframe(G). ◀

With these ingredients, we are now ready to prove our main theorem.

Proof of Theorem 1. Elberfeld and Kawarabayashi presented an algorithm to construct a
combinatorial embedding of a graph of the constant genus in logspace [6]. Hence, we do not
require a combinatorial embedding as part of the input when dealing with a constant-genus
graph. Otherwise, we require the combinatorial embedding of the graph as an input. We
assume that the genus of the input graph g is at most O(n). Let π be the combinatorial
embedding of G. We first triangulate the input graph in logspace. To do this, for each face
f of the input graph, we connect each vertex of f with the lowest index vertex in it. This
triangulation is done implicitly, whenever required, as storing the triangulated graph will
require a large amount of space. We call the resultant triangulated graph G. Note that
triangulating the graph only introduces more edges; therefore, a separator for G will also be
a separator for the input graph. Our objective now is to construct a separator of G. We
do this by iteratively applying Lemma 25. We will describe the algorithm by describing an
iteration of it. Before the ith iteration, we will have a set S of vertices which is empty before
the first iteration. Let G1, G2, . . . , Gm be the set of connected components in G \ S. We will
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describe the ith iteration as follows. The algorithm takes the component Gj whose size nj is
greater than 2n/3. If no such component exists, then the set S would be a separator of G,
and the algorithm outputs S and halts. Otherwise, consider the embedding induced by π

on Gj as its embedding. If the genus gj of this component is zero, the algorithm uses Imai
et al. planar separator algorithm to get its separator S1 and outputs S ∪ S1. If its genus
is non-zero we apply the algorithm from Lemma 25 on Gj with k set as n

1/2
j /g

1/2
j . If the

result of the application of the algorithm from Lemma 25 on Gj is a non-contractible cycle,
say S2, then we add the vertices of S2 to the set S and continue with the next iteration. If
the result is a separator, say S3, we output the set S ∪ S3 as the separator for the entire
graph. Otherwise, if the result is a subgraph H ′ of Gj , we take its dual H̃ ′ and find its
separator S̃′ using Lemma 5. S̃′ is a set of faces of H ′. Consider the set S4 of vertices on the
boundary of these faces. We return the set S ∪ S4. To see that the size of separator returned
by the above algorithm is O(g1/2n1/2), note that Lemma 25 returns a non-contractible cycle,
the genus of the graph is reduced by at least one. It is sufficient for us to use the induced
embeddings (see Mohar and Thomassen [13], Proposition 4.2.1 and Lemma 4.2.4). Hence,
our algorithm can return at most g such cycles; each has length O(k). For our value of k, the
total number of vertices in all such cycles can be at most O(g1/2n1/2). If it does not returns
a non-contractible cycle, then it returns either a separator of size O(k) ≤ O(g1/2n1/2) or
it returns the subgraph H ′. The number of faces in H ′ is O(n/k + g). Hence the size of
the separator returned by using the algorithm of Gilbert et al. [8] on the dual of H ′ will
be O(g1/2(n/k + g)1/2). Size of each face of H ′ is at most k1/2, hence, size of the set S4 is
O(k1/2g1/2(n/k + g)1/2). For our value of k, this is at most O(g1/2n1/2). ◀

We can use the following Lemma, which was formalized by Jain and Tewari [10] to
get a space-efficient polynomial-time algorithm for reachability in constant-genus graphs.
Reachability is determining if there is a directed path from one vertex to another in a directed
graph.

▶ Lemma 26. Let G be a class of graphs and w : N 7→ N be a function. If there exist a
polynomial-time algorithm that uses O(w(n) log n) space to find a separator of size w(n) then
there exists a polynomial time algorithm to decide reachability in G that uses O(w(n) log n)
space.

▶ Corollary 27. There exists a polynomial-time algorithm that uses O(n1/2 log n) space to
solve reachability in a constant-genus graph.

Previously, a polynomial-time algorithm that uses O(n1/2 log n) space for reachability was
known for planar graphs [9]. While for constant-genus graphs, a polynomial-time algorithm
that uses O(n2/3 log n) space was known [4]. Corollary 27 improves the space-bound to
O(n1/2 log n). Our result can thus be seen as both a generalization of Imai et al. [9] and as
an improvement to a previous result by Chakraborty et al. [5].

References
1 Eric Allender, Samir Datta, and Sambuddha Roy. The directed planar reachability problem.

In FSTTCS 2005: Foundations of Software Technology and Theoretical Computer Science,
25th International Conference, Hyderabad, India, December 15-18, 2005, Proceedings, pages
238–249, 2005. doi:10.1007/11590156_19.

2 Eric Allender and Meena Mahajan. The complexity of planarity testing. Information and
Computation, 189(1):117–134, 2004. doi:10.1016/j.ic.2003.09.002.

https://doi.org/10.1007/11590156_19
https://doi.org/10.1016/j.ic.2003.09.002


C. Gupta, R. Jain, and R. Tewari 23:13

3 Ryo Ashida, Tomoaki Imai, Kotaro Nakagawa, A. Pavan, N. V. Vinodchandran, and Osamu
Watanabe. A sublinear-space and polynomial-time separator algorithm for planar graphs.
Electronic Colloquium on Computational Complexity (ECCC), 26:91, 2019.

4 Diptarka Chakraborty, Aduri Pavan, Raghunath Tewari, N. V. Vinodchandran, and Lin F.
Yang. New time-space upperbounds for directed reachability in high-genus and h-minor-free
graphs. In Proceedings of the 34th Annual Conference on Foundation of Software Technology
and Theoretical Computer Science (FSTTCS 2014), pages 585–595, 2014.

5 Diptarka Chakraborty and Raghunath Tewari. An O(nϵ) space and polynomial time algorithm
for reachability in directed layered planar graphs. ACM Transactions on Computation Theory
(TOCT), 9(4):19:1–19:11, 2017.

6 Michael Elberfeld and Ken-ichi Kawarabayashi. Embedding and canonizing graphs of bounded
genus in logspace. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing
(STOC 2014), pages 383–392. ACM, 2014. doi:10.1145/2591796.2591865.

7 H. Gazit and G. L. Miller. A parallel algorithm for finding a separator in planar graphs. In
Proceedings of the 28th Annual Symposium on Foundations of Computer Science (FOCS 1987),
pages 238–248, October 1987. doi:10.1109/SFCS.1987.3.

8 John R Gilbert, Joan P Hutchinson, and Robert Endre Tarjan. A separator theorem for graphs
of bounded genus. Journal of Algorithms, 5(3):391–407, 1984. doi:10.1016/0196-6774(84)
90019-1.

9 Tatsuya Imai, Kotaro Nakagawa, Aduri Pavan, N. V. Vinodchandran, and Osamu Watanabe.
An O(n 1

2 +ϵ)-space and polynomial-time algorithm for directed planar reachability. In Pro-
ceedings of the 28th Conference on Computational Complexity (CCC 2013), pages 277–286,
2013.

10 Rahul Jain and Raghunath Tewari. Reachability in High Treewidth Graphs. In Proceedings of
the 30th International Symposium on Algorithms and Computation (ISAAC 2019), 2019.

11 Ioannis Koutis and Gary L. Miller. A linear work, O(n1/6) time, parallel algorithm for solving
planar laplacians. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2007), pages 1002–1011, 2007.

12 Richard J. Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979. doi:10.1137/0136016.

13 B. Mohar and C. Thomassen. Graphs on Surfaces. Johns Hopkins Studies in the Mathematical
Sciences. Johns Hopkins University Press, 2001. URL: https://books.google.com.sg/books?
id=_VFKscYKSicC.

14 Omer Reingold. Undirected connectivity in log-space. Journal of the ACM (JACM), 55(4):17,
2008.

15 Carsten Thomassen. Embeddings of graphs with no short noncontractible cycles. Journal of
Combinatorial Theory, Series B, 48(2):155–177, 1990. doi:10.1016/0095-8956(90)90115-G.

A Appendix

A.1 Proof of Lemma 24
Proof. We will prove each of the four statements of the proof in order.
1. Consider a face of the frame-graph frame(G). The boundary of this face is either a

frame-cycle or a branch triangle. The weight of a branch-triangle is zero, while the
number of vertices inside a frame-cycle is less than n/3 by construction. Hence the weight
of any face of frame(G) is less than n/3. The number of vertices inside a floor or a ceiling
cycle is less than n/3 by definition. Hence the weight of any face of mframe(G) is also
less than n/3.

2. We first prove that frame(G) is 2-connected. Let u and v be two distinct vertices of
frame(G). We have the following cases:
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Case 1 (Both u and v are on same frame cycle in pfloop(G)) : Since u and v are on
a cycle, there exist two vertex-disjoint paths from u to v.

Case 2 (u and v are on two different cycles in pfloop(G)) : Let cu and cv be the
cycles of pfloop(G) which contain vertices u and v respectively. Let p̃u and p̃v be the
connectors whose bodies are contained in cu and cv respectively. We first note that
there is a sequence of connecters p̃u = p̃1, p̃2, . . . , p̃k = p̃v such that p̃i and p̃i+1 has a
common end point for each i ∈ [1, k − 1]. Also note that the body of p̃i is contained in
a cycle ci of pfloop(G). Orient the darts of p̃i to form a path from first(p1) to last(p)k.
Let cleft

i be the path from left(first(p̃i)) to left(last(p̃i)). Similarly, let cright
i be the

path from right(first(p̃i)) to right(last(p̃i)). We see that cleft
i and cright

i do not share
any vertex. Thus, we can see that there exist two vertex-disjoint paths qleft and qright

from u to v such that qleft contains vertices of cleft
i and qright contains vertices of

cright
i for all i ∈ [2, k − 1].

The analysis of other cases is similar.

We will show that there are two vertex-disjoint paths between any two vertices u and v

of the graph mframe(G).
Case 1 (u and v are both in frame(G)): Since we have proved that frame(G) is two

connected, we know that there exist two vertex disjoint paths qleft and qright between
u and v in frame(G). Note that several floor-cycles and ceiling-cycles were added to
frame(G) and the vertices inside them were removed in order to construct mframe(G).
Let c be one such cycle.

If c intersects both qleft and qright. Let uleft and vleft denote the first and the last
vertices of qleft which intersects c. Similarly, let uright and vright denote the first
and the last vertices of qright which intersects c. These four vertices divide c into
four paths c1, c2, c3 and c4. Let the set of these four paths be C. Then one of the
following statements is true:

There exist paths from uleft to vleft and from uright to vright in C.
There exist paths from uleft to vright and from uright to vleft in C.

For both the above cases, we see that there exist two disjoint paths from u to v.
If c intersects only one of the path qleft and qright then we can modify that path to
contain part of the cycle.

Case 2 (u and v are on different floor-cycles or ceiling-cycles cu and cv): Let wu

and wv be vertices of frame(G) inside cu and cv respectively. We know such vertices
exits because of the way these cycles are defined. Since the graph frame(G) is
2-connected, there exist two disjoint paths qleft and qright between wu and wv in
it. Let uleft be the last intersection of qleft and cu. Similarly let uright be the last
intersection of qright and cu. Note that, since the paths qleft and qright are disjoint,
uleft ̸= uright. We similarly define vleft and vright.
Since the three vertices u, uleft and uright lie on the cycle cu, there exists two disjoint
paths: first from u to uleft and second from u to uright. Similarly, there exists two
disjoint paths from vright to v and from vleft to v. We can thus get two vertex-disjoint
paths from u to v, using these. Note that there may be other floor and ceiling cycles
intersecting these disjoint paths. In that case, we can use an argument similar to above
to show the existence of two disjoint paths from u to v.

3. We now prove that the size of each face of mframe(G) is O(k1/2). Note that the boundary
of a face of the graph mframe(G) is one of the following:
a. A floor-cycle of G.
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b. A ceiling-cycle of G.
c. A branch-triangle of G.
d. A frame-cycle of frame(G) modified by floor-cycles and ceiling-cycles.
In the first three cases, the size bound of the face follows by definition. We thus consider
the fourth case.
Consider any face defined by a modified frame-cycle, and let c denote the pre-frame-loop
from which we have defined it. Consider any path p of c connecting a boss-vertex of c

and a vertex of a branch-triangle used in c such that the path does not contain any other
vertex of a branch-triangle. By our modification, we can use a part p′ of p that is in the
outside of the corresponding floor-cycle and ceiling-cycle (if it exists) as a component of
the modified frame-cycle, and its length is bounded by 4k1/2. Note that the floor-cycle
may not be used in mframe(G) if it only intersects with the darts that we have removed
for defining the face. In this case, however, only a part of p′ is used for the modified
frame-cycle, which is even shorter. Thus, the modified frame-cycle consists of at most
four such reduced paths, a part of two floor-cycles, a part of four ceiling-cycles, and two
edges from two branch-triangles, and their total length is O(k1/2).

4. We first prove that the number of connectors is O(n/k + g), and the number of branch
vertices is O(n/k + g). Since there is a one-to-one correspondence respectively between
branch-triangles and branch vertices, and between frame-cycles and connectors, it will
follow that the number of faces in frame(G) is O(n/k + g).
We first define a new graph G′. The vertex set of G′ is the set of branch vertices in G. We
add an edge between two vertices of G′ if they are adjacent pair of branch vertices. Since
every edge of G′ corresponds to a connector of G, the graph G′ can also be embedded
on the surface of genus g where the embedding corresponds to the embedding of G. Let
n′, e′, f ′ be the number of vertices, edges and faces in G′ respectively. Thus, we have
n′ − e′ + f ′ = 2 − 2g by Euler’s formula. Note that every branch vertex have a degree
3, therefore we have 2e′ = 3n′. This implies e′ = 6g + 3f ′ − 6 = O(f ′ + g). Since,
there is one-to-one correspondence between voronoi regions and the faces of G′, we have
f ′ = O(n/k). Hence, we can conclude that e′ = O(n/k + g) and n′ = O(n/k + g).
Now, to prove that the number of faces in mframe(G) is O(n/k + g), we see that the new
faces introduced by our modification are those defined by floor cycles or ceiling cycles.
By definition, the number of these cycles is at most the number of boss-vertices or that
of branch-triangles, which is bounded by O(n/k + g). Note that we can divide a face
defined by a frame-cycle of frame(G) by ceiling-cycles, but it is easy to see that each face
is divided into at most some constant number of faces because the number of floor-cycles
and ceiling-cycles overlapping each frame-cycle is constant, say, at most six. From these
observations, we can bound the number of faces of mframe(G) by O(n/k + g). ◀
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