
Lecture 8: Quantum Fourier transform and its applications

Rajat Mittal

IIT Kanpur

We will now look at some of the basic and fundamental algorithms in quantum computing. We have
already seen Deutsch-Jozsa, Bernstein-Vazirani, and Simon’s algorithm. They were the first few quantum
algorithms which showed significant speed-up through quantum computation. These algorithms solved simple
and slightly contrived problems, just to show that quantum computation can do better than the classical
computation.

Let us take a hint from them. They are all on functions with domain Zn
2 and use Hadamard transform

as an essential tool. Specifically, Simon’s algorithm used Hadamard transform to find period in a function
on Zn

2 .

The straightforward idea would be to see if we can do Fourier transform (quantumly) on different groups.
Indeed, we will learn about Fourier transform on Zn, called discrete Fourier transform. Then, we will see
quantum implementation of this Fourier transform, called quantum Fourier transform (QFT). This will
allows us to develop two very important applications of QFT, phase estimation and Shor’s algorithm.

1 Fourier transform

Our first subroutine/algorithm will be a quantum version of the famous classical algorithm called discrete
Fourier transform. To see the quantum version, we need to first learn: what is Fourier transform, and then
see the classical algorithm for it.

You might have heard of Fourier transform as the conversion of a function from time domain to frequency
domain. It has applications in analysis of differential equations, spectroscopy, quantum mechanics and signal
processing.

Note 1. Even here, the “Fourier transform” of periodic functions is special, concentrated on specific fre-
quencies. We will see that Fourier transform will allow us to find period of a periodic function in the cases
mentioned below.

Instead, we will introduce Fourier transforms as a general tool to analyze functions over Abelian groups
(mostly finite).

Note 2. Remember that an Abelian group is a commutative group, i.e., ∀g1, g2 ∈ G : g1g2 = g2g1.

Note 3. If you are not familiar with group theory, you can directly skip to the next subsection.

In general, Fourier transform acts on functions over these Abelian groups (e.g., real or complex numbers)
and gives representation of those functions in the character basis. Readers are encouraged to look at the
definitions of character, group theory and Fourier analysis over an Abelian group. The next few paragraphs
will use facts from the basics of character theory and can be found in any standard text on group theory.

Characters:

Given a function f : G→ C on an Abelian group G, there is a standard representation of the function as
a C|G| vector (as a vector of complex numbers with length |G|).

Note 4. If you are confused about a general group, take G to be Zn, the group of remainders modulo n.

Exercise 1. What is this representation?

The representation is simply the value of the function on different elements of G, i.e., as a vector in CG.
Let us consider special functions of this kind. A character χ of G is a function χ : G→ C− {0}, s.t.,

χ(g1)χ(g2) = χ(g1g2) ∀g1, g2 ∈ G

Note 5. We remove 0 from C to make it a group under multiplication.

Exercise 2. Can you think of a simple function which is a character?

The function χ0(g) = 1, for all g ∈ G, is known as the trivial character and is denoted by χ0.

Exercise 3. Show that χ(e) = 1, where e is the identity element?

For any element g in a finite group G, there exists an n ≤ |G| such that gn = e, where e is the identity
element. You can show (as an exercise) that |χ(g)| = 1, for any g in G.

Exercise 4. What are the characters for Z2?

Properties of characters:

These properties of characters are well-known. You are encouraged to read any standard text on group
representations for proofs (or try them yourselves). Below, χ will denote a character and G is a finite Abelian
group.

Observe that a character χ can be viewed as a vector over complex numbers with length |G|.

– For a non-trivial character χ,
∑

g∈G χ(g) = 0. If χ is trivial, then this sum is |G|.
– The product of two characters is a character.
– Any two distinct characters of G are orthogonal to each other (as vectors in C|G|).
– There are exactly |G| many distinct characters for G.
– With appropriate normalization, the characters of G form an orthonormal basis of the space C|G|.

Note 6. It is known that the set of characters of G form a group under multiplication, called Ĝ. We already
saw that the size of Ĝ and G is same, not just that, they are actually isomorphic. In other words, we can
index characters of G with elements of G (though this indexing is not unique).

Using these properties, we can define the Fourier transform over an Abelian group G. The Fourier
transform is basically the basis change operator from the standard basis e1, e2, · · · , e|G| to the normalized
character basis χ1, χ2, · · · , χ|G|. In other words, Fourier transform matrix is the unitary matrix which takes
the standard basis e1, e2, · · · , e|G| to the normalized character basis χ1, χ2, · · · , χ|G|.

Any function f in C|G| can be represented in Fourier basis as,

f =

|G|∑
i=1

f̂(i)χi.

The coefficients f̂(i) is called the i-th Fourier coefficient of f . Taking inner product with χi,

f̂(i) =
1

n

∑
g

χi ∗ (g)f(g) := ⟨χi|f⟩.

Note 7. We have defined ⟨f |χi⟩ slightly differently, with a normalization. This makes χi’s orthonormal.

Exercise 5. Why is the character basis different from any other orthonormal basis?

2

Hint: Look at the entry-wise multiplication of character basis vectors.
These Fourier coefficients capture properties of our function which might not be evident in the standard

representation. For instance, let us look at the first Fourier coefficient, one corresponding to the trivial
representation. By definition,

f̂(1) = ⟨χ1|f⟩ =
1

|G|
∑
x

f(x). (1)

In other words, first Fourier coefficient tells us about the summation of function value at all points.

Deutsch Jozsa algorithm as a Fourier transform: Remember Deutsch’s problem, we want to find whether
a function f : {0, 1}n → {0, 1} is balanced or constant. Clearly, sum of all function values when f is constant
is either 0 or 2n, it is 2n−1 for the balanced case.

A much better separation condition can be obtained by looking at the function (−1)f(x) (this is similar
to moving to range {−1, 1}). If f is balanced then

∑
x(−1)f(x) = 0; if f is constant then

∣∣∑
x(−1)f(x)

∣∣ = 2n.

So, to solve Deutsch’s problem, we do Fourier transform of (−1)f(x) and look at the Fourier coefficient
of the trivial representation.

Exercise 6. Which Abelian group should we take Fourier transform over?

Given the definition of the function, it is clear that we need Fourier transform over group Zn
2 . To find it,

we first find the Fourier transform over Z2.
Notice that there are two characters of the group Z2.

χ1 =

(
1
1

)
and χ2 =

(
1
−1

)
.

To get the Fourier transform over Z2, we put χi’s in columns and multiply by an appropriate constant
to normalize.

Exercise 7. What is the Fourier transform for Z2?

The change of basis matrix from standard basis to χ1, χ2 is our old friend, Hadamard matrix. So, the
Fourier transform over Zn

2 is just H⊗n. A rigorous proof of the previous line requires some work, readers are
encouraged to do it.

Exercise 8. Convince yourself that Deutsch-Jozsa algorithm is basically a Fourier transform over Zn
2 .

1.1 Discrete Fourier transform

The discrete Fourier transform (DFT) is the Fourier transform over the group Zn. It is a linear transformation
on functions of the type f : Zn → C.

Exercise 9. Can you find all characters of the group Zn? Hint: use the fact that Zn is cyclic.

Remember, this function f can be represented by a vector x ∈ Cn. The DFT is given by the DFT matrix
F (n× n matrix),

Fjk = ωjk.

Here ω = e2πi/n is the nth root of unity and j, k range from 0 to n− 1. So the matrix looks like,

Fn =
1√
n


1 1 · · · 1
1 ω · · · ωn−1

1
...

. . .
...

1 ωn−1 · · · ω(n−1)(n−1)


3

If the co-ordinates of x are x0, x1, · · · , xn−1 where xi = f(i). The DFT outputs n complex numbers
y0, y1, · · · , yn−1, s.t.,

yk =
1√
n

∑
0≤j≤n−1

ωjkxj .

Exercise 10. Show that Fn is a unitary matrix. What is the inverse of Fn?

1.2 Quantum discrete Fourier transform

The classical discrete Fourier transform takes a vector x to its image y. Suppose we consider x as a quantum
state |x⟩ (co-ordinates being the amplitudes), then the quantum Fourier transform (QFT) takes this state
to |y⟩ (similar to quantum Fourier transform over Zn

2).
We will show a circuit for quantum discrete Fourier transform using 1 qubit gates and controlled unitaries

on 1 qubit. Since any 1 qubit or controlled unitaries on 1 qubit can be performed efficiently using any universal
gate set (Solovay-Kitaev theorem [3]), this circuit is efficient in the usual sense.

To specify the action of the Fourier transform in terms of the basis |0⟩, |1⟩, · · · , |n− 1⟩,

|j⟩ → 1√
n

n−1∑
k=0

ωjk|k⟩,

where ω = e2πi/n is the n-th root of unity.

Exercise 11. Show that it is a valid quantum operation.

Exercise 12. Will implementing QFT imply that we can do DFT?

It turns out that QFT can be done in poly-log(n) operations, much better than even FFT. Though, in
this case, we don’t have direct access to the amplitudes of the state. So, having an algorithm for QFT does
not imply that we have a fast algorithm for DFT. The output required in the two problems is different. They
are definitely related and we will show some surprising results using QFT in later lectures (phase estimation,
Shor’s algorithm).

Exercise 13. Is the Fourier transform matrix Hermitian?

Again, we assume n = 2k for simplicity (for other n’s, the algorithm is slightly different and uses phase
estimation, refer [1]). So, the basis states are k bit strings |j⟩ = |j1j2 · · · jk⟩. QFT has a very useful product
representation (the representation gives us the intuition to find the circuit for QFT).

F2k |j1j2 · · · jk⟩ = F2k |j⟩

=
1

2k/2

2k−1∑
l=0

ωjl|l⟩

=
1

2k/2

∑
l1

∑
l2

· · ·
∑
lk

ωj(
∑k

h=1 lh2
k−h)|l1l2 · · · lk⟩

=
1

2k/2

∑
l1

∑
l2

· · ·
∑
lk

k⊗
h=1

e2πijlh2
−h

|lh⟩

=
1

2k/2

k⊗
h=1

(∑
lh

e2πijlh2
−h

|lh⟩

)

=
1

2k/2

k⊗
h=1

(
|0⟩+ e2πij2

−h

|1⟩
)

(2)

4

Hence we can say,

|j1j2 · · · jk⟩
F

2k−−→ 1

2k/2
(|0⟩+ e2πi0.jk |1⟩)(|0⟩+ e2πi0.jk−1jk |1⟩) · · · (|0⟩+ e2πi0.j1j2···jk |1⟩).

Note 8. 0.j1j2 · · · jk means the expression
∑k

l=1 jl2
−l, as in the usual binary notation.

Exercise 14. Convince yourself that the above product representation is correct.

Using this product representation and the elementary gates,

Rl =

(
1 0

0 e2πi/2
l

)
,

we can derive the circuit for quantum Fourier transform.

Exercise 15. What are the gates R1, R2, R3?

Consider the first qubit of the transformed state, (|0⟩+ e2πi0.jk |1⟩). If jk is 0 then we get |+⟩ state, else
|−⟩ state. That means, just apply a Hadamard to jk to get this qubit.

Exercise 16. Show that a Hadamard on jk will produce the desired state.

Similarly the second qubit, (|0⟩ + e2πi0.jk−1jk |1⟩), has a relative phase of (−1)jk−1 multiplied by ijk . To
produce (|0⟩+ e2πi0.jk−1jk |1⟩), we can apply a Hadamard to jk−1 (to get a relative phase of (−1)jk−1), and
then a controlled R2 on jk−1 with control bit jk (to get a relative phase of ijk). Continuing this process will
give us the required circuit. The only thing is that the order of qubits are flipped. We can use the SWAP
operation (swap the two qubits) to get the correct order.

H

H

H

x

x
SWAP

Fig. 1. QFT for k = 3

Exercise 17. Show that the circuit 1 gives QFT for k = 3.

Note 9. The operations on (k − 1)-th qubit needs to be applied before the operations on k-th qubit.
It is easy to swap qubits using the CNOT operation. Have you seen it earlier? Try to construct a circuit

for swapping qubits.

Exercise 18. Give the QFT circuit for general k.

Exercise 19. What is the number of operations in our implementation of QFT in terms of n?

Exercise 20. QFT can be used to find period of a function with domain Zn, this is called period finding.
Read more about it, the algorithm is very similar to Simon’s algorithm.

5

2 Phase estimation

Another very useful subroutine, in quantum computing, is known as phase estimation. Given a unitary U
(UU∗ = I), we know that all its eigenvalues have norm 1. Since any complex number can be written as
re2πiθ, all eigenvalues of U should be of the form e2πiθ for some θ. To determine the eigenvalue, it is enough
to find this θ, called the phase of the eigenvalue or eigenphase.

We will start with a few basic assumptions so that the idea of phase estimation is clear; later we will see
how to take care of them.

– Assume that θ = 0.j1j2 · · · jk in the binary representation.

Exercise 21. Why can we assume that θ ≤ 1?

– We are given the eigenvector as a quantum state |u⟩.

The phase estimation subroutine, given a unitary U and its eigenvector |u⟩, finds the phase of the
eigenvalue corresponding to the eigenvector |u⟩. To be precise, the algorithm will take the eigenvector |u⟩ as
input, and it needs the ability to perform controlled U2i(i ≤ k) operations; using those, it determines the
corresponding eigenphase.

To start with, we will also assume that we have the ability to perform U l for all l ≤ 2k = n (instead of

just controlled U2k). Later we will show that controlled U2i(i ≤ k) operators can be used to perform U l for
all l ≤ 2k.

Exercise 22. Can you think of a way to do it?

We will start with the state |0, u⟩, where the first part of the register holds k qubits and second register
holds the eigenvector |u⟩. Then we will apply Hadamard on the first part and obtain,

1

2k/2

2k∑
l=1

|l, u⟩.

Exercise 23. What other operation can we use instead of applying Hadamard?

Now we can perform the operation |l, u⟩ → |l⟩U l|u⟩. Notice that this can be done classically on the basis
states and hence can be done quantumly.

This gives us the state,

1

2k/2

2k∑
l=1

|l⟩U l|u⟩ = 1

2k/2

2k∑
l=1

e2πiθl|l, u⟩.

Exercise 24. What can be done to recover θ now?

Some thought shows that the first part of the register is the Fourier transform of 2kθ. Hence applying
inverse Fourier transform, we get the state |2kθ⟩.

If we are only given the controlled versions of U2l where l ≤ k, then how can we achieve the same
phase estimation? Notice that l now varies only up to k. Essentially, we are given the power to apply

U,U2, U4..., U2k .

The simple idea is to break any integer 0 ≤ h ≤ 2k as powers of 2. Then using the controlled version, we
can apply Uh. The following circuit has been taken from [3].

Exercise 25. Show that the following circuit (Fig. 2) works.

6

Fig. 2. Phase estimation

Let us see how to take care of the assumptions we made, there are only k bits in the expansion of θ and
we have the eigenvector as a quantum state |u⟩.

Most of the time, it is not possible to know the number of digits in the binary expansion of θ beforehand.
What can be done in this case? If we want to approximate θ up to k bits of accuracy, using the same circuit
with k + f(ϵ) qubits instead of k qubits will give us the answer with probability 1 − ϵ. Here, ϵ should be
treated as a parameter and f(ϵ) is some function of ϵ. The details can be found in Nielsen and Chuang [3].

Suppose we don’t have the eigenvector |u⟩. If the same procedure is done over |ψ⟩ =
∑

i αi|ui⟩, we will

get the phase corresponding to |ui⟩ with probability |αi|2.

Exercise 26. Prove the above assertion.

Exercise 27. What will be the output of phase estimation on Z gate with |u⟩ = |+⟩ state?

3 Factorization: Shor’s algorithm

Shor’s algorithm for integer factorization is one of the leading results in the field of quantum computing; it
works by noticing that factorization can be reduced to order finding. We will see both steps, reduction to
order finding and then the quantum algorithm for order finding.

We will introduce the two problems first.

Factorization: As one would guess, the problem is to find a non-trivial factor of a composite number n.
Notice that the input size is log n and hence we are looking for algorithms which run in polylog(n) time.
Since the number of factors are at most log n, we can find all factors of n by applying this algorithm at most
log n times.

Order finding over a group G: Given an element g in a group G, find the order of g in G (smallest r,
s.t., gr = 1). It turns out that order finding is a period finding problem over Z, you will prove this in the
assignment.

7

Group Z is not finite (unlike Zn), still we can use QFT. Remember that QFT can be used to find period
of a function with domain Zn. We will use QFT to find period of a function with domain Z. In section 3.2,
the quantum algorithm for order finding will be described.

3.1 Extra reading: Reduction to order-finding

In this section, we will reduce the factorization of n to order-finding in the group Z∗
n. The group Z∗

n denotes
the set of all elements of Zn coprime to n with multiplication as operation. In other words, we are simply
asking, given n and a (coprime to n), what it the smallest r such that ar = 1 mod n.

Exercise 28. What is the order of 2 in Z∗
7? What is its order in Z∗

16?

Notice a subtlety here, factorization reduces to order finding over Z∗
n (a finite group). Though, order

finding over a group (including Z∗
n) is same as solving HSP over Z (an infinite group).

Our aim in this section is to reduce factorization to order finding over Z∗
n. We will first get rid of the

trivial cases. It can be easily checked if the number is even or if n = mk (take the square root, cubic root
etc. up to log n).

Exercise 29. How can we find square root (and other roots) efficiently?

This allows us to assume that the input to the factorization problem, n, is a number of type kk′, where k
and k′ are co-prime and odd. We are interested in finding a non-trivial factor of n (not 1 or n). As mentioned
earlier, we can repeat the procedure to find the complete factorization. The reduction shows that if we can
solve order finding on Z∗

n, then we can find a non-trivial factor of n (where n is of above type).
The basic idea of the reduction is to find a non-trivial square root b of 1, i.e.,

b : b2 = 1 mod n, b ̸= ±1 mod n

Look at the possible square roots of 1 mod n, i.e., b for which b2 = 1 mod n. Clearly there are two
trivial solutions, b = ±1 mod n. Though, if there exists a square root b ̸= ±1 mod n, then b2−1 is divisible
by n and b± 1 is not. In this case, gcd(b± 1, n) will give non-trivial factors of n.

The reduction from factorization to order-finding basically searches for such a non-trivial square root b.
The algorithm takes a random a < n and finds its order r. If r is even and ar/2 ̸= ±1 mod n, we have found
a non-trivial square root.

Exercise 30. What if a is not in Z∗
n?

Exercise 31. Look at Algorithm 1, and convince yourself that it will output a non-trivial factor.

Check if n is even or of the form n = mk ;
Pick an a, s.t., gcd(a, n) = 1 (else we have already found a non-trivial factor of n) ;
for i = 1, · · · do

Find the order of a and call it r (use the quantum algorithm for order-finding) ;
if r is odd or ar/2 = −1 mod n then

Pick another a co-prime to n ;
else

Found b = ar/2 ̸= ±1 mod n, square root of 1 ;
Find the non-trivial factors from gcd(b± 1, n) ;
Break;

end
end

Algorithm 1: Algorithm for factorization using order-finding

We are only left to prove that this algorithm works with high probability. That is equivalent to showing
that there are enough a’s such that,

8

– order r of a is even,
– and b = ar/2 ̸= ±1 mod n.

Exercise 32. Can it happen that ar/2 = 1 mod n?

Note 10. The quantum algorithm for factorization is a randomized algorithm; hence, it is enough to show:
the number of good a’s is a constant fraction of the number of total a’s.

Following theorem proves that there are enough number of good a’s. It follows from Chinese remaindering
and standard number theory arguments. A casual reader can directly skip to the algorithm for order finding.

Theorem 1. Suppose n is a product of two co-prime numbers k, k′ > 1. For a randomly chosen a, the
probability that a has an even order r and ar/2 ̸= −1 mod n is at least 1/4.

Exercise 33. Convince yourself that Theorem 1 shows that our reduction is complete.

Before we prove the theorem, we need to know few properties of the numbers of the form q = pk.

– Z∗
q is cyclic (Theorem 2 in Sec. 10).

– It is easy to calculate Euler function ϕ(q) (Read about Euler’s totient function ϕ, if you don’t know it).

Exercise 34. Show, ϕ(q) = pk−1(p− 1).

– Lemma 1 proven below.

Let m := ϕ(q) = pk−1(p− 1) denote the size of group Z∗
q . We introduce the notation, p2(z), the highest

power of 2 that divides any number z. In other words, z = 2p2(z)k, where k is an odd number.

Lemma 1. For a random element from Z∗
q , its order r satisfies p2(r) = p2(m) with probability exactly 1/2.

Proof. We know that Z∗
q is cyclic. Let g be a generator of Z∗

q . In other words, a random element of Z∗
q is gt

where 1 ≤ t ≤ m. The order of gt is,

ord(gt) =
m

gcd(m, t)
.

If t is odd, then gcd(m, t) is odd and p2(r) = p2(m). Similarly, if t is even then gcd(m, t) is even and
p2(r) < p2(m). Since half the t’s are odd and half even, lemma follows.

We are ready to prove Theorem 1.

Proof of Theorem 1. Consider the prime factorization n = pi11 · · · piss . By Chinese remainder theorem,

Z∗
n
∼= Z∗

p
i1
1

× · · · × Z∗
pis
s
.

So, to randomly chose a, it is equivalent to pick random a1, · · · , as from the respective Z∗
pi ’s. Say, rj are

the orders of aj modulo p
ij
j . Then by Chinese remainder theorem, r is the LCM of rj ’s. The following claim

captures the bad a’s in terms of p2(rj).

Claim. Suppose the order r of a is odd or ar/2 = −1 mod n. Then, p2(rj) is same for all j.

Proof. The order is odd iff all rj ’s are odd.

Otherwise, if ar/2 = −1 mod p
ij
j then none of rj divide r/2 (pj ’s are odd). All rj ’s divide r but not r/2,

so p2(rj) is the same (equal to p2(r)).

9

From lemma 1, with half the probability, the order rj of aj will be such that p2(rj) = p2(ϕ(pj)) =: lj .
Call the case when p2(rj) = lj as the first case and other the second case (they happen with probability
1/2). We need to pick ai’s such that all p2(rj)’s are not same. The table below summarizes the situation.

n pi11 pi22 · · · piss
p2(m) l1 l2 · · · ls
a a1 a2 · · · as
r p2(r1) = l1 | p2(r1) ̸= l1 p2(r2) = l2 | p2(r2) ̸= l2 · · · p2(rs) = ls | p2(rs) ̸= ls

The last row denotes that for exactly half of the aj ’s, p2(rj) = lj .
Notice that lj ’s only depend on n. If all lj are equal, pick a1’s from first case and a2’s from the second

case. If they are unequal, say l1 ̸= l2, then pick a1, a2 from the first case.
In either scenario, rj ’s can’t be all equal, implying r is even and a

r
2 ̸= 1 mod n (by claim). Since we

have only fixed at most 2 cases out of s, the probability is at least 1/4.

Hence the reduction from factorization to order finding is complete.

Z∗
pk is cyclic The proof of the following theorem is given for completeness. Interested readers can take a

look.

Theorem 2. If n = pk for some power k of an odd prime p then G = Z∗
n is cyclic.

Note 11. This is not true for even prime, Z∗
8 is not cyclic.

Exercise 35. Find out where did we use the fact that p is odd.

Proof. Assume that t = pk−1(p− 1), the order of the group G.
We know that Z∗

p is cyclic [2], and hence have a generator g. We will use g to come up with a generator
of G. First notice that,

(g + p)p−1 = gp−1 + (p− 1)gp−2p ̸= gp−1 mod p2.

So either (g+p)p−1 or gp−1 is not 1 mod p2. We can assume the latter case, otherwise replace g by g+p
in the argument below.

So gp−1 = 1 + k1p where p ∤ k1. So using binomial theorem,

gp(p−1) = (1 + k1p)
p = 1 + k2p

2,

where p ∤ k2.

Exercise 36. Continuing this process, show that,

gp
e−1(p−1) = 1 + kep

e,

with p ∤ ke.

From the previous exercise gt = 1 mod pk but gt/p ̸= 1 mod pk. The only possible order of g then is
pk−1d where d is a divisor of p− 1 (because the order has to divide t, Lagrange’s theorem).

If the order is pk−1d, then

gp
k−1d = 1 mod pk = 1 mod p.

But gp = g mod p (why?). That implies gd = 1 mod p. Since p− 1 is the order of g modulo p (g is the
generator), implies d = p− 1. Hence proved.

10

3.2 Order finding algorithm

Since Z is not finite, we will solve it by a seemingly different technique (this perspective of factoring algorithm
is due to Kitaev). The explanation here is inspired from John Watrous’s course notes [4].

You can read about the usual approach (HSP based) from multiple sources, e.g., [3] and [1]. In both the
cases, you get lot of multiples of 1/r and deduce r from that information (classical postprocessing).

For factorization, we need to solve order finding over group Z∗
n. That means, given an a co-prime to n,

we need to find the smallest positive r for which ar = 1 mod n.

Note 12. Order finding is not a period finding problem over Z∗
n but on Z.

Let us take a look at the algorithm for order finding using phase estimation. Suppose, we are interested
in finding the order of a modulo n (a and n are given and they are coprime).

Exercise 37. How can we efficiently find if two numbers are coprime?

First approach:

Let k be the smallest number, such that, 2k ≥ n. Consider the Hilbert space C2k spanned by |b⟩, where
b ranges from 0 to 2k − 1. Define the unitary operator,

U |b⟩ = |ab mod n⟩ for b ∈ Z∗
n.

The unitary is not completely specified, but we are only interested in these basis states. The action on the
other basis states can be assumed to be identity.

Exercise 38. Show that it is a unitary operator because a is coprime to n. How can we implement this
unitary?

Since a has order r, it can be observed that Ur = I. From spectral decomposition, the eigenvalues of
U have to be rth roots of unity. In other words, possible eigenvalues of U are e2πi

s
r , where s is an integer

between 0 and r − 1. The following exercise explicitly finds the eigenvalues and eigenvectors of U .

Exercise 39. Show that |us⟩ is an eigenvector of U with the eigenvalue e2πi
s
r . Where,

|us⟩ =
1√
r

r−1∑
j=0

e2πij
s
r |aj mod n⟩.

This analysis seems to suggest a very simple algorithm given s and the eigenvector |us⟩. We can apply
phase estimation on the unitary U with state |us⟩. The output will be a good approximation of s

r , we

can get r from this information. Notice that the powers U2j can be implemented using repeated squaring.
Unfortunately, we don’t have state |us⟩ for any s.

Modified approach:

The idea would be to apply phase estimation on a superposition of eigenvectors. By linearity, we will
get a particular eigenvalue with probability according to the amplitude of the corresponding eigenvector in
superposition (we saw this in the phase estimation lecture). It turns out that the state |1⟩ (which we can
definitely prepare) can be written as a linear combination of these eigenvectors. In fact, it is an easy exercise
to prove that,

1√
r

r−1∑
s=0

|us⟩ = |1⟩.

Notice that even the amplitude on each eigenvector is same! We will apply phase estimation on |1⟩ for
unitary U ; we will get a good approximations of s

r , with equal probability for all s. How can we obtain r
from s

r?

11

We can repeat this phase estimation multiple times and obtain various approximations of s/r for different
s (all s occur with equal probability). These actually correspond to different characters trivial on the subgroup
rZ. As in all hidden subgroup problems, we need to find our subgroup from these characters. The strategy
for finite Abelian group will not work here.

Finishing the algorithm, classical part:

Our remaining task is to find r given multiple approximations to various s
r . The next insight is the

following theorem about continued fractions (for reference, look at [3]). It shows that given a good enough
approximation to an s

r , where s and r are coprime, there exist a continued fractions algorithm which can
recover s and r from this approximation.

Theorem 3 ([3]). Suppose s
r is a rational number in the lowest form (no common factor between s and r),

s.t., ∣∣∣s
r
− ϕ

∣∣∣ ≤ 1

2r2
.

If r < n, then s, r can be obtained in poly(L) time from ϕ, where L = ⌈log n⌉.

Note 13. The continued fractions algorithm is a very beautiful mathematical fact. Unfortunately, it will not
be covered in this course due to lack of time. To read more about the continued fractions algorithm, please
refer to [3] and references therein.

The consequence of continued fraction theorem is: if we get a good enough approximation of s/r (for an
s coprime to r), we can find r. Let us take care of these two issues.

Exercise 40. It will be helpful if you remember the details of phase estimation. Please take a look at the
notes for phase estimation.

– Precision: Since r ≤ n, it is sufficient to get an approximation which is 1
2n2 close. That means, we need

the first 2L+1 bits of phase to be correct (remember L = ⌈log n⌉). So, we need to run phase estimation
on 2L+ 1+ f(ϵ) qubits and it will give us phase with probability 1− ϵ (this follows from our discussion

on phase estimation). We can extend U to C22L+1

by trivial action on other basis states.

Exercise 41. Do you remember the definition of U? What was its action on basis states?

– Coprime s: Can you think of a way to find an s coprime to r? It will again be our usual trick, find lots of
s, one of them will be coprime to r. Prime number theorem states that the number of primes less than
n are around O(n

logn).

Exercise 42. Show that the number of s, co-prime to r, are at least O(1
L) fraction of total s using prime

number theorem.

If we have O(L) different s (picked randomly), with high probability one of them will be coprime to r.
Continued fraction algorithm on that s/r will give us the order r.

Exercise 43. Can you summarize the complete algorithm for factorization now? Try to draw a circuit for it.

Hence the order finding algorithm can be summed up as: repeat the phase estimation on U at least O(L)
times. The precision for phase estimation would be k = 2L+ 1 + f(ϵ). The circuit for order finding is given
in Fig. 3.

12

Fig. 3. Order finding algorithm

4 Assignment

Exercise 44. Show that the action of Hadamard is,

H⊗k|i⟩ = 1√
2k

∑
j

(−1)i.j |j⟩,

Exercise 45. Read about characters and groups.

Exercise 46. For any element g in a finite group G, there exists an n such that gn = e, where e is the identity
element. Show that |χ(g)| = 1 for any g in G.

Exercise 47. What are the characters of Zn.

Exercise 48. Give a circuit to perform inverse Fourier transform.

Exercise 49. Read about the approximate phase estimation from [3].

Exercise 50. Is there a difference between H⊗k and QFT on k qubits (2k dimensional vector)?

Exercise 51. Read about the complexity class BQP.

Exercise 52. Lemma 2. Given a positive number α, let there exists a sequence of rationals pn

qn
, such that,

|qnα− pn| ≠ 0 tends to zero. Then, α is irrational.
Prove the lemma by showing that if α = a/b then |qnα− pn| ≥ 1/b. Using the lemma, show that e is

irrational.

Exercise 53. We had claimed that order finding is a period finding problem.

– Show that gj ̸= gk if 0 ≤ j < k < r. Where r is the order of g.
– Show that order finding is a period finding problem in Z.

13

Exercise 54. Using Chinese remainder theorem, show that there exists a b, such that, b2 = 1 mod n and b ̸=
±1 mod n. Here n contains at least two distinct primes in its factorization.

Exercise 55. Why is the phase estimation algorithm for order finding, described above, is same as the HSP
algorithm.

Exercise 56. This exercise is kind of a sanity check on continued fractions algorithm. Show that there is no
other rational number s′

r′ , where r
′ < r and ∣∣∣∣s′r′ − ϕ

∣∣∣∣ ≤ 1

2r2
.

References

1. A. Childs. Quantum algorithms, 2013. https://www.cs.umd.edu/~amchilds/qa/qa.pdf.
2. R. Lidl and H. Niederreiter. Finite Fields. Cambridge University Press, 1997.
3. M. A. Nielsen and I. L. Chuang. Quantum Computation and Quantum Information. Cambridge, 2010.
4. J. Watrous. Order finding, 2006. https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.10.pdf.

14

https://www.cs.umd.edu/~amchilds/qa/qa.pdf
https://cs.uwaterloo.ca/~watrous/QC-notes/QC-notes.10.pdf

	Lecture 8: Quantum Fourier transform and its applications

