
Lecture 12: Limitation on quantum advantage for total functions

Rajat Mittal

IIT Kanpur

There are two kinds of Boolean functions, total and partial. Total functions are defined on the entire
domain {0, 1}n. On the contrary, partial functions are defined on a subset D ⊂ {0, 1}n of the entire domain
(also known as promise problems).

We have seen multiple algorithms in the quantum computing world.

– Algorithms like Deutsch, Bernstein-Vazirani and Simon gave exponential advantage but solved a promise
problem (partial functions).

– Grover and associated algorithm only gave a quadratic advantage but were defined on every input (total
functions).

For total functions, we have seen that OR gives a quadratic advantage, but some functions like Parity
and Majority do not give any speedup. The natural question is, are there total functions where randomized
and quatum query complexity can be separated exponentially?

The answer to this question is negative, and we will prove that even deterministic and quantum query
complexity are polynomially related. We know, from as early as early 2000’s, that D(f) = O(Q(f)6) where
D(f) and Q(f) are deterministic and quantum queries respectively (see [2]).

We will present a more recent proof with a better exponent.

Theorem 1. Given a Boolean function f : {0, 1}n → {0, 1}, let D(f) be its deterministic query complexity
and Q(f) be its quantum query complexity. Then,

D(f) = O(Q(f)4).

Additionally, this will allow us to see one of the most celebrated result in the recent times in the field of
query complexity, Huang’s sensitivity theorem [3].

We will start this lecture by introducing sensitivity related complexity measures motivated from the lower
bounding techniques of the previous lectures.

1 Sensitivity and related measures

Once again, our central object of study is a Boolean function f : {0, 1}n → {0, 1}, where every input x is
a string of n bits. The lower bounds we have seen on OR function (and sometimes Parity), do not depend
upon the exact function, but the fact that there is an input where changing a bit changes the function. Let
f : {0, 1}n → {0, 1} be a function and x be an input. Let y1, y2, · · · , ym be inputs such that each of them are
Hamming distance 1 from x and f(yi) ̸= f(x). We saw that the lower bound proofs for OR can be modified
to imply that the deterministic query complexity is m, randomized query complexity is Ω(m) and quantum
query complexity is Ω(

√
m).

To formalize this, we define when an input is sensitive at an index. A position in the input x can be
indexed by an i ∈ [n].

Fix a Boolean function f : {0, 1}n → {0, 1}. For an index i ∈ [n], define xi to be the input where the
i-th bit is flipped in x. An index i is called sensitive for input x if f(x) ̸= f(xi). The local sensitivity s(f, x)
at an input x is the number of sensitive indices in the input x. The sensitivity of the function, s(f), is the
maximum possible sensitivity s(f, x) over all inputs x.

Exercise 1. Can you give an example of a function and an input where sensitivity is n (what about 1)?

Exercise 2. Show that sensitivity is a lower bound on deterministic query complexity.

Exercise 3. Can you think of a function whose sensitivity is o(n)? Can you think of a function and an input
whose sensitivity is 0?

A very similar, but slightly complex, measure is called block sensitivity.
For a block of indices B ⊆ [n], define xB to be the input where all bits in block B are flipped. As before,

a block B is called sensitive for input x if f(x) ̸= f(xB). The local block sensitivity bs(f, x) at an input x
is the maximum number of disjoint sensitive blocks possible in the input x respectively. As you might guess,
the block sensitivity of a function is the maximum possible block sensitivity bs(f, x) over all inputs x.

Exercise 4. Show that block sensitivity is a lower bound on deterministic query complexity.

We moved from sensitivity to block sensitivity because we hope that it might allow us to give better
lower bounds.

Exercise 5. Show that bs(f, x) ≥ s(f, x). Can you show a function and an input where this inequality is
strict?

Our first step to prove Theorem 1 will be to upper bound D(f) in terms of known complexity measures,
bs(f) and deg(f).

1.1 Upper bound on deterministic query complexity

The first upper bound will be in terms of degree and block sensitivity. For a Boolean function f : {0, 1}n →
{0, 1},

D(f) ≤ deg(f)bs(f). (1)

To prove this upper bound, we need to show a deterministic query algorithm which makes at most
bs(f) deg(f) many queries. In every iteration we will query at most deg(f) many variables. After every
iteration, we will look at the restricted function (setting the variables according to queries already done).
If the function is constant, we output the value, otherwise again query all variables of a maxonomial (a
monomial with highest degre) in the next iteration. Since the degree can only decrease after setting a few
variables, we query at most deg(f) many variables in each iteration.

We just need to show that function does become constant in at most bs(f) many iterations. Suppose not,
and x and y be two inputs such that f(x) = 0 and f(y) = 1. We will show that there are bs(f) + 1 many
disjoint sensitive blocks for x. It will shown using the following claim.

Claim. If M is a maxonomial for f , then it contains a sensitive block for every input.

Proof. Let z be an input. Set everything outside of M according to x.

Exercise 6. Show that the restricted function is not constant. What happens to monomial M?

So there is a setting of variables of M (say z′) which makes the function take value different from z. The
subset of variables of M where z and z′ differ form the sensitive block.

Using the claim, we get a sensitive block for x at every iteration. Another sensitive block will be given
by y.

Exercise 7. Prove the above two assertions.

By construction, these blocks are disjoint (subset of variables queried at the i-th iteration). Hence we get
bs(f) + 1 many disjoint sensitive blocks at x, contradicting that maximum block sensitivity at any input is
bs(f).

Hence, the algorithm will run for at most bs(f) many iterations, giving an upper bound of deg(f)bs(f)
on the deterministic query complexity.

To prove D(f) = O(Q(f)4), we would like to upper bound deg(f) and bs(f) by known lower bounds on
Q(f), approximate degree of f and λ(f). Here λ(f) was the biggest eigenvalue of the sensitivity graph of f .
For these lower bounds on Q(f), see the previous lecture.

The proof of Theorem 1 will be completed by two proving two results.

2

– bs(f) ≤ d̃eg(f)2 [4]

– deg(f) ≤ λ(f)2 [3]

The next two sections will prove these results.

1.2 Upper bound on Block sensitivity by approximate degree

The aim of this subsection is to show

bs(f) = O(d̃eg(f)2). (2)

The result was proved by Nisan and Szegedy [4]. Fortunately, we have seen this result already (almost)!

Exercise 8. Can you remember where?

It is a slight extension of the result that approximate degree of ORn is
√
n [5]. The same proof can be

used to show that even the approximate degree of Promise-ORn is also
√
n; where Promise-ORn is only

defined on Hamming weight 0 and 1 inputs and has the same value as ORn.

Specifically, let f has maximum sensitivity at z, we can consider the translated function

f ′(x) = f(x⊕ z).

Convince yourself that f ′ has a Promise OR structure on s(f) many bits.

Exercise 9. Show that the approximate degree of f is same as f ′. Show that this implies,

s(f) = O(d̃eg(f)2).

In other words, if you look at the function OR, it has kind of a flower structure (center at all 0 input and
n petals coming out of it). For a function with sensitivity s(f), a similar translated flower structure is there
with s(f) petals.

The bound on block sensitivity, Equation 2, follows by a similar argument where each block corresponds
to a petal. Since we can always translate a function without affecting its block sensitivity and approximate
degree, assume that f achieves its block sensitivity at 0 (all 0) input.

Formally, let B1, B2, · · · , Bb be maximum disjoint sensitive blocks possible for f where b = bs(f, 0) =
bs(f). Fix up all other variables which are not in any of the sensitive blocks according to x. We will abuse
the notation and call the restricted function f .

Exercise 10. Show that the approximate degree of a restriction is always less than the approximate degree
of the original function, so it is enough to show Equation 2 for the restricted function.

Construct a function f ′ on b variables such that

f ′(z) = f(x1,z1 , x2,z2 , · · · , xb,zb),

where xi,0 sets variables of block Bi according to x and xi,1 sets variables of block Bi according to xBi .

Exercise 11. Show that the approximate degree of f ′ is at least
√
b (notice the flower structure).

The only thing left to show is that d̃eg(f ′) ≤ d̃eg(f) (to prove Equation 2).

Exercise 12. Show this by converting an approximating polynomial of f to f ′. Hint: use the fact that zi = 0
(respectively zi = 1) means all variables in that block are 0 (respectively 1).

3

2 Huang’s result: upper bound on degree using λ(f)

We are left with showing deg(f) ≤ λ(f)2. You will show in the assignment that λ(f) ≤ s(f). So the relation
between degree and lambda will imply deg(f) ≤ s(f)2. This was the intended result of the breakthrough by
Huang [3].

The quantity λ(f), also called spectral sensitivity of f , was introduced in [3] and was formalized in [1].
First, we remind you of the spectral sensitivity for a Boolean function f : {0, 1}n → {0, 1}. To define

spectral sensitivity, we need the concept of sensitivity graph of the function f , a subgraph of Boolean
hypercube.

Exercise 13. What is a Boolean hypercube (as a graph)?

The sensitivity graph of f , say Gf , is a subgraph of Boolean hypercube, i.e., there are 2n vertices (for
each input). An edge x, y is present in Gf iff f(x) ̸= f(y) and x, y is an edge in Boolean hypercube (they
have Hamming distance 1).

Exercise 14. Find a function f whose sensitivity graph is the Boolean hypercube itself.

Exercise 15. How many edges are there in the sensitivity graph of ORn.

Exercise 16. Show a subgraph of Boolean hypercube which is not a sensitivity graph for any function f .

We are interested in the eigenvalues of the adjacency matrix, say Af , of the graph Gf . We first notice
that the graph Gf is bipartite.

Exercise 17. Show that Boolean hypercube is bipartite.

That means, if u is an eigenvalue of Gf , then so is −u (assignment). That means we can talk about the
maximum eigenvalue (without clarifying if absolute value needs to be taken before taking maximum).

The spectral sensitivity of f , called λ(f), is the maximum eigenvalue (also called spectral norm) of the
adjacency matrix of Gf .

Since the eigenvalue of a matrix is bounded by the maximum row sum (why), λ(f) ≤ s(f). For λ(f) ≤
d̃eg(f), refer to [1]. This completes the relationships given in Figure ??.

The main result of this section is the following upper bound on deg(f) in terms of λ settling sensitivity
conjecture.

Theorem 2 ([3]).
For any Boolean function f : {0, 1}n → {0, 1},

deg(f) ≤ λ(f)2.

The first simplification is that we can assume deg(f) = n. If not, pick the monomial in the polynomial
representation of f with highest degree, and set all other variables to some values. For the restricted function,
deg(f) is same but λ(f) can only be smaller (assignment).

That means we can assume deg(f) = n (any counterexample to Theorem 2 can be converted into a
counterexample with full degree). In other words, we just need to prove that λ(f) ≥

√
n when deg(f) = n.

What can we say about sensitivity graph of f when deg(f) = n? Define V0 = {x : f(x) = PARITY(x)}
and V1 = {x : f(x) ̸= PARITY(x)}.

Exercise 18. Show that deg(f) = n is equivalent to saying that |V0| ≠ |V1|.

The problems statement changes to, given that |V0| > 2n−1 (if |V0| < |V1| then consider 1−f), show that
λ(f) ≥

√
n.

Exercise 19. Show that there is no edge between V0 and V1. Inside V0 (and V1), the edges are exactly the
edges of Boolean hypercube.

4

This means that the eigenvalues of Gf are union of eigenvalues of the subgraph on V0 and V1. We know
that inside V0 and V1, the edges are exactly like the Boolean hypercube. In other words we are interested in
the eigenvalues of the induced subgraph on V0 and V1. For any V with more than half the vertices, we need
to show that the induced subgraph from Boolean hypercube (say GV) has eigenvalue more than

√
n. This

will finish the proof.
An interesting lemma relates the eigenvalues of the induced subgraph with the eigenvalues of the original

graph. It is called Cauchy’s interlacing theorem [3], we will only use the following special case of it.

Lemma 1. Let G be a graph on k vertices and its eigenvalues be λ1 ≤ λ2 · · · ≤ λk. If GV is the induced
subgraph on V with l vertices, then

∥GV ∥ ≥ λl,

where ∥GV ∥ denotes the maximum eigenvalue of GV .

Proof. The adjacency matrix of G is an k× k matrix. The eigenvectors corresponding to bigger eigenvalues,
{λk, λk−1, · · · , λl}, span a vector space of dimension k − l + 1, say S1. The vector space corresponding to l
standard basis vectors ev where v ∈ V , say S2, spans a subspace of dimension l.

Exercise 20. Since the sum of dimensions of S1 and S2 is more than k, show that their intersection is
non-empty.

For the common vector v, Av = AV v (where A,AV are the adjacency matrices of G,GV respectively),
and the length of Av is more than λl times the length of v. So, we get

∥GV ∥ := ∥AV ∥ ≥ λl.

The adjacency matrix of Boolean hypercube (say Hn) has dimensions 2n × 2n. Arrange the eigenvalues
of H in increasing order, λ1 ≤ λ2 ≤ · · · ≤ λ2n . From Lemma 1, the maximum eigenvalue of GV is more than
λ2n−1+1.

What is λ2n−1+1? You will show in the assignment that the eigenvalues of Boolean hypercube has very
simple structure. It has eigenvalue −n+ 2k with multiplicity

(
n
k

)
.

Exercise 21. What bound will this give on ∥GV ∥ when |V | > 2n−1?

Unfortunately the interlacing theorem applied on Hn doesn’t seem to be of much help. It turns out, a
small modification of the adjacency matrix of Hn will do the trick. The idea is to introduce a signing of
the Boolean hypercube (assign -1 to some of the 1 entries of the matrix), that compresses the eigenvalues.
In particular, we will try to make half the eigenvalues

√
n and other half to be −

√
n. Applying interlacing

theorem on that signed matrix will give the result.

Proof of Theorem 2. The main idea of the proof is to construct a signing of the adjacency matrix of the
Boolean hypercube. A signing of a {0, 1} matrix is assigning negative sign to some non-zero entries of the
matrix. Let As be a signing of a {0, 1} matrix, then you will show in the assignment

∥A∥ ≥ ∥As∥.

We will construct a signing s of Boolean hypercube such that half of its eigenvalues (2n−1 of them) will
be

√
n and the other half will be −

√
n. If A is the adjacency matrix of GV ,

∥AV ∥ ≥ ∥(As)V ∥.

Here A is the adjacency matrix of Hn and AV denote the induced matrix on the subset V .
By Lemma 1, ∥(As)V ∥ should be greater than the 2n−1 + 1 highest eigenvalue of As, which is

√
n.

5

The only task is to construct the signing with required properties. Notice that we want to have half the
eigenvalues

√
n and other half to be −

√
n. This implies that we want,

A2
S = nI.

(The trace being 0 ensures that there are equal number of
√
n and −

√
n eigenvalues).

Looking at every non-diagonal entry of A2
S , it basically arises from two sums from a 4-cycle in the Boolean

hypercube. If (x, y) are at Hamming distance 2 differing at i, j,

A2
S(x, y) = A2

S(x, x
⊕i)A2

S(y, y
⊕j) +A2

S(x, x
⊕j)A2

S(y, y
⊕i).

This can only be 0, if all 4-cycles have odd number of −1’s.

Exercise 22. Convince yourself of the previous statement. Also check that diagonal entries are fine.

In other words, a signing with odd number of −1’s will finish the proof. Such a signing is trivial for n = 2.

Exercise 23. Can you construct such a signing for n = 3?

Formally, the signing can be defined inductively by,

(A1)s =

(
0 1
1 0

)
, (An)s =

(
An−1 I
I −An−1

)
You can easily show the following properties of this signing by induction.

– (An)s is a signing of Hn (it follows the structure of Boolean hypercube).
– Trace of (An)s is 0.
– (An)

2
s = nI.

From the third property, each eigenvalue is either
√
n or −

√
n. From the trace property, the multiplicity

of each eigenvalue is 2n−1. Thus, we have the signing with required property, showing that if V is a subset
of vertices of Hn such that |V | > 2n−1, then ∥GV ∥ ≥

√
n.

By the discussion before the proof, this implies that λ(f) ≥
√
n for any f with degree n.

Huang’s result, using the already known relationship between block sensitivity and degree [4], implies
that bs(f) = O(s(f)4). We only know a function for which bs(f) = Ω(s(f)2) [6]. It is an open problem to
bridge this gap.

There have been interesting developments after this discovery, as mentioned before, it was proven that

λ(f) = O(d̃eg(f)) in [1]. They were able to use this to show that for any Boolean function f , deg(f) =

O(d̃eg(f)2). This is known to be optimal by OR function.

3 Assignment

Exercise 24. Show that s(f),bs(f) are Θ(n) for any function on n variables which only depends upon the
Hamming weight of the input.

Exercise 25. Find the bsf and sf for the addressing function.

Exercise 26. Can you think of an f and z to separate sz(f) and bsz(f).

Exercise 27. Suppose A is the adjacency matrix of a bipartite graph. Show that if u is an eigenvalue of A,
then so is −u.

Exercise 28. Why is the λ of restricted function smaller than the λ of the original function?

6

Exercise 29. Let Hn be the Boolean hypercube on n elements. Show that Hn has eigenvalue −n+ 2k with
multiplicity

(
n
k

)
for 0 ≤ k ≤ n.

Hint: Use induction and structure of the adjacency matrix of Boolean hypercube.

Exercise 30. Just by looking at the eigenvalues of Boolean hypercube and Cauchy’s interlacing theorem, you
can come up with a statement like: if the degree n coefficient of f is big enough then λ(f) ≥

√
n. Make this

statement precise and prove it.

Exercise 31. Show that if As is a signing of A, then

∥A∥ ≥ ∥As∥.

Exercise 32. What is the lambda of PARITY?

Exercise 33. Show that for all Boolean functions f , λ(f) ≤ s(f).

References

1. S. Aaronson, S. Ben-David, R. Kothari, S. Rao, and A. Tal. Degree vs. approximate degree and quantum impli-
cations of huang’s sensitivity theorem. STOC 2021, 2021.

2. H. Buhrman and R. de Wolf. Complexity measures and decision tree complexity: a survey. Theoretical Computer
Science, Volume 288, Issue 1, Pages 21-43, 2002.

3. H. Huang. Induced subgraphs of hypercubes and a proof of the sensitivity conjecture. Annals of Mathematics,
Volume 190, Pages 949-955, 2019.

4. N. Nisan and M. Szegedy. On the degree of boolean functions as real polynomials. Computational Complexity,
volume 4, pages 301–313, 1994.

5. R. Paturi. On the degree of polynomials that approximate symmetric boolean functions. STOC 1992, 1992.
6. D. Rubinstein. Sensitivity vs. block sensitivity of boolean functions. Combinatorica, Volume 15, Pages 297–299,

1995.

7

	Lecture 12: Limitation on quantum advantage for total functions

