
Lecture 1: Introduction to Probability

Rajat Mittal

IIT Kanpur

Please look at the course policies mentioned in the course homepage. Most importantly, any immoral
behavior like cheating and fraud will be punished with extreme measures and without any exception. This
note is an introduction and written to give a feeling about what will be covered in the course (hence the
terms are loosely defined). This introduction will make more and more sense as we progress through the
course.

You have already taken CS201 and studied many parts of discrete mathematics. To remind you, the
branch of mathematics which deals with “discrete” objects and structures is called discrete mathematics.
Here, by discrete set, we mean that the elements are distinct and not connected. So we can say that the set
has finite or countably infinite number of elements (the elements can be counted). To get the intuition, the
set of natural numbers is a discrete set. On the other hand, the set of real numbers are continuous.

Discrete mathematics plays a fundamental role in Computer Science and is an essential background for
almost all of the advanced courses like theory of computation, compilers, databases, operating systems,
algorithms and data structures etc.. One of the main reason for its importance is that the information in a
computer is stored and manipulated in a discrete fashion.

As part of CS201 you studied many different disciplines in discrete mathematics; specifically you focused
on combinatorics, graph theory, number theory and abstract algebra. In combinatorics, we talked about the
art of counting. In this course, we take that topic further and focus on probability theory.

1 An introduction to probability

There is no need to emphasize the importance of probability in science. Just to give a glimpse, probability is
useful in statistics, physics, quantum mechanics, finance, artificial intelligence/machine learning, computer
science and even gambling.

You have already been introduced to probability in high school, and must have calculated chance of
events (like 2 heads in succession or prime number showing up on a throw of a dice). Let us take an example.

Exercise 1. You role two dices, what is the probability that the two outcomes are co-prime.

This is not a very difficult one. There are total 36 possibilities. Given some time, you can figure out the
number of favorable cases (find it). The ratio of these two numbers will give us the probability.

This course will take your knowledge much further. How about looking at some of the questions we will
be concerned with in this course?

Exercise 2. Take a look at Fig. ??. What is the probability that a random chord is larger than the side of
the equilateral triangle ABC?

One way is to pick the two endpoints of the chord. Without loss of generality, we can fix one end-point
to be A. Then, the chord is longer than the side if and only if the other endpoint falls between B and C. So,
the probability should be 1/3.

But wait, a chord can also be defined by its center. If the chord is bigger than the side, its center should
fall in co-centric circle with half the radius (convince yourself). So, chord is larger with probability 1/4.

Also, a chord can be defined uniquely by its distance from the center. That will give us probability 1/2
(work it out). Which one is the correct answer?

We take another example from the continuous world.
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Fig. 1. Chord and the equilateral triangle problem.

Exercise 3. Suppose you are given an infinite plane with parallel horizontal lines, with 1 centimeter distance
between any two closest ones. You drop a needle of length one on this plane randomly. How many intersections
do you expect to get with these parallel lines.

This seems like a more difficult question (the needle can be dropped at any angle and any position).
Though, a careful formulation and some integration can potentially give us a solution. We will develop a
formal framework for probability which will make these problems much easier to deal with.

How about some other examples from the real world.

Exercise 4. A cancer test is accurate with probability 95%. That means, if a person has cancer, the test will
output YES 95% of the time. Similarly, if the person does not have cancer, the test will output YES 5% of
the time. Suppose, I went for this test and result came out to be a YES. What is the probability that I have
cancer?

It takes some time to realize what is being asked in this question. Many qualified professionals (doctors)
predict that I have 95% chance of having cancer, which is incorrect!! Actually, there is not enough information
in the question. You need to know the fraction of people who have cancer in the general population. We can
assume that this fraction is pretty small, that will give a pretty small probability of me having cancer.

Exercise 5. A survey was conducted in different towns (cities, villages) of England about the percentage of
people having diabetes. It turns out that the best five towns (lowest fraction of diabetes) were all small
villages. What could be the reason?

You might give credit to cleaner air, better lifestyle etc. for this statistics. Though, let us look at the
survey results from one more angle.

Exercise 6. A survey was conducted in different towns (cities, villages) of England about the percentage of
people having diabetes. It turns out that the worst five towns (largest fraction of diabetes) were all small
villages. What could be the reason?

Given this statistics alone, you might have blamed it on poor health facilities, bad diet etc. We will see
that both this observations can be explained with some knowledge of probability theory.

Those seem like interesting questions, though you might wonder how those are applicable to computer
science. We move to the world of computing.

Exercise 7. Given two polynomials, e.g. (x + 1)(x + 3)(x + 8) + 5 and (x + 4)(x − 3)(x + 20) − 3, how will
you quickly convince yourself that they are equal. One way might be to calculate the long from, but that
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would be very cumbersome and error-prone. Do you have a method to finish this task quickly such that your
answer is correct with high probability?

Until now you have only seen algorithms which give the correct answer all the time. For most of the
real-world problems, this requirement is too stringent. We are happy even if the answer is correct almost all
the time. We will formally define what it means to compute in a randomized fashion. This will allow us to
give really efficient algorithms.

To take a few more examples,

Exercise 8. You have a server for an application, and keep getting requests from multiple IP addresses (as a
data stream). Can you detect if there are a few IP addresses who might be making a lot of requests. (This
would give evidence that there is an attack on the server.)

Exercise 9. You manage a search engine, how do you define which pages are important and which are not.
Basically the problem Google has to solve every time you search.

How about these two seemingly unrelated questions in mathematics which do not even talk about chance
or probability?

– A family of subsets of {1, 2, · · · , n} is called an anti-chain if no element of the family contain another
element of the family. How many anti-chains can be there?

– Prove that for every B = {b1, b2, · · · , bn} (set of non-zero integers) contain a subset A (of size ≥ 1
3n)

which is sum-free (no two elements of A sum up to an element of A).

The theory of probabilistic methods will answer these questions using simple ideas from probability.
These long list of questions might have convinced you that the concepts learnt in high school are not

sufficient to tackle many problems on probability. This course will focus on concepts of probability theory
to take your knowledge one step further.

On a lighter note, you might know this quote,

“We may not be able to get certainty, but we can get probability, and half a loaf is better than no bread.”
– C S Lewis (author of The Chronicles of Narnia)

Outline of the course:

The course will start with the basic formalism of probability theory; simultaneously, we will revise topics
learnt before in high school. We will move to conditional probability, topics of immense importance in
computer science and machine learning. Next, the concepts of random variables, expectation, moments,
distributions will be introduced.

The later half will introduce concepts like concentration inequalities, independence and Markov chains;
we will learn these concepts and their applications to computer science. Close to finish, we will look at
statistics, as it is used widely in machine learning today. If time permits, we will end the course by looking at
Probabilistic methods, a pretty successful field giving existential proofs (in contrast to constructive proofs)
in many diverse fields.

Our main focus will be about the role of probability in computer science and mathematics. The probability
theory considered will mostly deal with sample spaces and sets which are discrete. Though, the basics of
continuous probability spaces will also be covered.

2 Basics of probability

In probability, our main focus is to compute the chance of an outcome in a certain experiment. The experiment
could be tossing a coin, throwing a dice or picking a random number. We might be interested in different
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kind of outcomes, e.g., getting head, getting a prime number on the top of the dice, picking a number bigger
than 3/4 or getting a correct answer from the algorithm.

For these situation, we had one of the most basic rule of probability: the probability of an event is the
ratio of favorable outcomes to the total outcomes. Though, words like experiment, outcome and favourable
are only loosely defined. Our first task is to give a mathematical foundation to these words.

2.1 Sample space and events

The first observation is, the physical implementation of an experiment (how did we toss a coin or threw a
dice) is not important, we generally make some assumptions about it. Mathematically, we are only interested
in the list of outcomes and their corresponding probabilities. To take an example, we do not worry about
making a dice with 3 faces or one where each face has different probabilities of showing up; we assume
that each face shows up with equal probability (or they have different probabilities which add up to 1) and
calculate the probabilities of interesting events (like an even number showing up). For example, I can say that
the coin gives head with probability .7 and Tails with probability .3, you need to compute the probability of
getting 2 successive heads, without worrying about how to construct such coin.

Let us begin trying to model an experiment’s result for the sake of probability theory. The set of all
possible distinct outcomes for an experiment is known as the sample space; mathematically, it is a set and
it is generally denoted by symbol Ω.

Exercise 10. What is the sample space for a coin toss, sequence of coin toss, throwing of a dice and picking
a random number.

Notice that the sample space is discrete in all the above cases, except if you pick the random number
from a continuous range (say [0, 1]) in the last example.

For a given sample space, we might be interested in a certain outcome or a subset of outcomes from the
sample space. A subset of the sample space is known as an event. Our task is to model the probability of
different events.

We will be studying probability theory in the context of computer science. Hence, in most of the cases,
our sample sets will be discrete. In this case, we can define probability distribution function easily.

A probability distribution function for a sample space Ω is a map P : Ω → R, s.t.,

– P (ω) ∈ [0, 1] for all ω ∈ Ω,
–
∑
ω∈Ω P (ω) = 1.

The probability of an event (a subset of Ω) can be naturally defined as,

P (S) =
∑
ω∈S

P (ω).

Let’s take an example. Your cousin tells you to that she has cards numbered from 1 to 1000. She will
pick a card at random and if it is divisible by 2 or 5 you win. What is the probability that you win?

We model the situation as a probability distribution function. Define the sample space asΩ = {1, 2, · · · , 1000},
set of all possible card numbers. The set of all events will be the set of all subsets F = 2Ω .

We will assume that the card is picked uniformly at random, that is, the probability of obtaining a
particular number in the range 1 to 1000 is 1/1000. This defines a probability distribution function for all
S ∈ F ,

P (S) =
|S|

1000
.

Observe that we need to find the size of the set of numbers divisible by 2 or 5 and lie between 1 and
1000.

Exercise 11. Show that the numbers divisible by 2 or 5 between 1 and 1000 is 600.
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The probability of you winning the game is 600/1000 = 3/5. Say, she will pay you 100 rupees if you win.
Otherwise, you will pay her 200 rupees. Should you accept the bet. If you want to make a bet, how much
money can you pay her?

So odds of you winning are 3 : 2 worse than 2 : 1. So you should not accept the bet. But the bet will be
favorable to you if you pay her less than 150 rupees. 1

This was a simple example with all elements of sample space having equal probability. Though, our new
formulation has already generalized the basic notion of probability as the ratio of favorable outcomes and
total outcomes. We can potentially assign different probabilities to each outcome.

Exercise 12. Suppose a bag contains a red ball and a blue ball, what is the probability that you pick a red
ball from the bag in your first try? If you knew that red ball was twice as big as the red ball, would you
still want to keep your answer same? How will you model this in the new sample space and probability
distribution framework?

The two things which completely models probability for an experiment are:

– sample space and
– probability distribution function.

Whenever we deal with a question in probability, our first aim should be to identify the sample space, and
if possible the probability distribution function.

Exercise 13. Suppose Amitabh (from Sholay) tosses a coin twice and is interested in finding the probability
that both coins come out to be head. If coin comes head with 10% chance, then what is the sample space
and the probability distribution function for this experiment?

2.2 Union of events

Let A,B be two events. What can you say about the probability of the event A∪B? Clearly, if A and B are
disjoint,

P (A ∪B) = P (A) + P (B).

If they are not disjoint, we need to subtract the probability of the intersection (which was counted twice),

P (A ∪B) = P (A) + P (B)− P (A ∩B).

Similarly, most of the rules of set theory directly give us results about probability. For example, remember
De Morgan’s rules, they will give us more relations.

Exercise 14. Prove the following.

– P (AC) = 1− P (A).
– P ((A ∪B)C) = P (AC) + P (BC)− P (AC ∪BC).
– P ((A ∩B)C) = P (AC) + P (BC)− P (AC ∩BC).

The union rule above can be generalized to multiple sets. For example, if there are three sets, our first
approximation of P (A ∪B ∪ C) would be,

P (A ∪B ∪ C) ≈ P (A) + P (B) + P (C).

Though, this counts the probability of elements in the intersection twice, a better approximation would
be,

P (A ∪B ∪ C) ≈ P (A) + P (B) + P (C)− P (A ∩B)− P (B ∩ C)− P (C ∩A).

1 We will make this mathematically more formal later by introducing the concept of expectation.
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You can guess that the only elements to worry for, whose probability might not be correctly counted, are
the ones in the intersection of all three. This gives the final formula,

P (A ∪B ∪ C) = P (A) + P (B) + P (C)− P (A ∩B)− P (B ∩ C)− P (C ∩A) + P (A ∩B ∩ C).

This should remind you of inclusion-exclusion principle. A similar logic gives us the formula for the
probability of the union of n sets,

P (
⋃
i∈[n]

Ai) =
∑

S⊆[n],S 6=ϕ

(−1)|S|+1P (
⋂
i∈S

Ai). (1)

Let us see an application to this formula. Suppose we have n letters and n corresponding envelopes. If
you place each letter randomly in an envelope, what is the probability that no letter goes into the correct
envelope?

Exercise 15. What is the sample space and the probability distribution function?

Define Ai to be the event that letter i does not go into its corresponding envelope.

Exercise 16. What is the probability, in terms of P (Ai), of no letter going to the correct envelope?

Some thought shows that we are interested in the quantity,

P


 ⋃
i∈[n]

Ai

C
 = 1− P (

⋃
i∈[n]

Ai).

We already know the expression for the right hand side,

1− P (
⋃
i∈[n]

Ai) =
∑
S⊆[n]

(−1)|S|P (
⋂
i∈S

Ai).

Exercise 17. What is the probability of P (
⋂
i∈S Ai)?

If all letters in S go to their place, we need to only arrange n − |S| places. The probability should be
(n−|S|)!

n! . So, the probability that no letters goes to its correct place is,

∑
S⊆[n]

(−1)|S|
(n− |S|)!

n!
=

n∑
k=0

(−1)k
(
n

k

)
(n− k)!

n!
.

Simplifying the expression, we get 1− 1/1! + 1/2!− 1/3! + · · · , approaches 1/e as n tends to infinity.

Union bound: Even though we have the exact formula for computing the probability of union, in most of
the cases it is hard to calculate all the terms in Equation ??. In these case, this simple bound (not an exact
answer) is much more helpful.

P (
⋃
i∈[n]

Ai) ≤
∑
i

P (Ai). (2)

This is called union bound (and also Boole’s inequality).

Exercise 18. How will you prove union bound using the properties of probability distribution function?

Consider, for example, a random graph with n vertices (the ones you studied in the course on discrete
structures). We will talk about one of the popular models, Erdos-Renyi graph, where each edge is present in
the graph with probability p (called G(n, p)).
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Exercise 19. What can we say about the probability of having an isolated vertex (no edges connected to it)?

We can apply Equation ??, but it will require much more work. An easier bound can be given using
union bound. Notice that the probability that a particular vertex is isolated is (1− p)n−1. Defining Ai to be
the event that i-th vertex is isolated,

P (Gp has an isolated vertex) = P (
⋃
i∈[n]

Ai) ≤ n(1− p)n−1.

This simple bound will allow us to prove this statement: if p ≥ 2 lnn
n , then the probability of having an

isolated vertex reaches 0 as n→∞. You will prove this in the assignment.

Summary of this section:
Using the concepts of sample space and probability distribution function, we have modeled probability/chance/odds
in an experiment. To summarize, say, we perform an experiment and are interested in the probability of var-
ious events in the experiment. The set of outcomes of the experiment will be called the sample space Ω. Any
subset of Ω is an event. The probability distribution function specifies probability for any such event.

As noted above, this is an easier way to define probability distribution function. This can lead to trouble
in a non-discrete sample space. Also, not all subsets of the sample space need to be interesting and it might
be a tedious task to define probability on every subset.

To take an example, suppose the sample space is [0, 1]. There is no way to define a probability distribution
function such that each element has a positive probability and the probabilities add up to 1. Mathematician
consider a much more general definition of probability distribution that takes care of even these instances.

3 Generalized definition of a probability distribution function

In the easier case discussed in the last section, we were able to define probability for every element of 2Ω

(any subset of the sample space). In many situations, we might only be interested in certain set of events or
it might not be possible to define probabilities for all events. The new definition of probability distribution
function will only define probability for interesting set of events.

Can pick any subset of 2Ω (power set of sample space)? For the probability function to make sense, if
A,B are events, then AC and A ∪ B should also be events. This intuition gives rise to the concept of a
sigma-algebra. A collection of subsets F of the sample space Ω is called a sigma-algebra, if,

1. Ω is in F .
2. Complement of a set in F is in F .
3. Countable unions of sets in F is in F .

Exercise 20. Show that F is closed under countable intersection.

Notice that 2Ω is always a sigma algebra for any Ω. With sigma algebra, we are ready to generalize the
definition of probability distribution function.

Given a sigma algebra F , a function P : F → [0, 1] is called a probability distribution function (or just
probability distribution), if it satisfies

1. P (Ω) = 1,
2. If A,B are disjoint then P (A ∪B) = P (A) + P (B).

Exercise 21. Show that the second rule above implies the corresponding property for countable union. Why
does it stop for countable union?

Exercise 22. Prove that P (A ∪ B) = P (A) + P (B) − P (A ∩ B) using the formal definition of probability
distribution function. How will you prove union bound?
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This general model of probability needs a sample space as before, then defines set of interesting events
as a sigma-algebra. The sigma-algebra should be a subset of 2Ω and satisfy the three conditions mentioned
above.

A probability distribution function assigns probability to every interesting event (element of sigma-
algebra) in a consistent way. By consistent, we mean that the probability function satisfies two conditions
above.

Exercise 23. What is the sigma-algebra for our easier definition of probability distribution function?

We will mostly worry about these cases, when sigma-algebra is the whole power set of Ω. Unfortunately,
it is not enough when the sample space Ω is continuous.

3.1 Probability on a continuous sample space

Till now we have only dealt with discrete sample spaces. In real life, there are many situations when the
associated sample space is naturally continuous (uncountable number of points). To take few examples,

– What is the probability of picking a number less than 1/2, if we pick a random number between 0 and
1?

– If we spin a wheel, what is the probability that the arrow rests in the first quadrant?
– If we break a stick of unit length at two points at random, what is the probability that the three sticks

can form a triangle?

For some of these you might know the answer intuitively (1/2 for the first one). How should these
experiments be put up in our formal framework? Start with one of the simplest experiment, picking a
random number between 0 and 1. The obvious sample space is the set of points [0, 1].

What should be the probability distribution function? It seems that all points should occur with equal
probability by symmetry. Though, any non-zero value to them will make total probability greater than 1. In
other words, every point should have probability 0 !

Exercise 24. What could save us here?

Remember, at least intuitively, the probability of picking a number less than .5 seemed to be 1/2.
Extending that, point would fall in an interval [a, b] with probability b− a (since length of [0, 1] is 1). This
seems to be correct, probability of getting to an interval should be proportional to its length. This way we
can define probability of any disjoint union (countable) of intervals.

Exercise 25. What about other subsets of the power set of sample space?

The concept of sigma-algebra comes to our rescue. We DON’T need to define probability of every subset.
We can only define probability of all events in the sigma-algebra generated by intervals. When the probability
for these intervals is proportional to their length, it is called a uniform distribution.

Exercise 26. Do you remember the chord problem? Take a look at Fig. ??. What is the probability that a
random chord is larger than the side of the equilateral triangle ABC?

There are multiple ways to fix the sample space. First one is to fix one end-point of the chord to be A
and randomly pick the other point. Then, the chord is longer than the side if and only if the other endpoint
falls between B and C. So, the probability should be 1/3.

Other sample space could be, when we pick the center of the chord uniformly in the circle. For chord to
be bigger than the side, its center should fall in the shaded co-centric circle (Fig. ??). So, chord is larger
with probability 1/4.

Another sample space could be to pick the point on a line from the center to the circumference, i.e., a
chord can be defined uniquely by its distance from the center. Since the sides are half-way from the center
(a little bit of trigonometry), it will give us probability 1/2.
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Fig. 2. Chord and the equilateral triangle problem.

All of these are correct answers, the answer depend upon the sample space chosen. It reemphasizes the
fact that we should be clear about the sample space before dealing with a problem on probability.

Some, not all, of you might have a doubt. There is a one to one correspondence between these sample
spaces, shouldn’t we get the same answer. No, one to one correspondence is not enough. Consider the
probability that 4 ≤ x2 ≤ 9 given 0 ≤ x ≤ 6.

Exercise 27. What is the probability if we pick a random number in [0, 6]? What is the probability if a
random x2 is picked in [0, 36]?

4 Assignment

Exercise 28. Read about Monty Hall problem.

Exercise 29. Where have you used probability in your life?

Exercise 30. Calculate the probability of getting two consecutive heads when you toss a coin 4 times.

Exercise 31. A derangement is a permutation of the elements of a set, such that, no element appears in its
original position. If we pick a random permutation of m elements, what is the probability that we get a
derangement?

Exercise 32. Suppose we break a unit stick at two random points. Find the probability that the broken parts
can form a triangle.

Hint: Fix a point, find the probability that you get a triangle when other point is picked randomly,
integrate.

Exercise 33. For the events A1, A2, · · · , An, prove,

P (
n
∪
i=1
Ai) =

n∑
i=1

P (Ai)−
∑

1≤i<j≤n

P (Ai ∩Aj) + · · ·+ (−1)n+1P (
n
∩
i=1
Ai).

Exercise 34. How many numbers are there between 1 and 1000 divisible by 2,3 or 5?

Exercise 35. Prove the following for Erdos-Renyi graph G(n, p): if p ≥ 2 lnn
n , then the probability of having

an isolated vertex reaches 0 as n→∞
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