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Semidefinite programming is a class of convex optimization where:

– Cost/optimization function is linear,
– Constraints are either linear equalities/inequalities or generalized inequalities with respect to the semidef-

inite cone.

Hence, it can be viewed as linear programming with the additional power of generalized inequalities for
the positive semidefinite cone (Sn). In this lecture note we will look at the standard form of a semidefinite
program. The lecture will end with some situations which can be modelled as a semidefinite program.

1 Definition

A semidefinite program (SDP) in a standard form looks like,

max C •X
s.t. Ai •X = bi, i = 1, · · · ,m

X � 0.

Note 1. Remember that A • B = tr(ATB) is the hadamard product between two matrices. It can also be
viewed as the standard inner product if A,B are viewed as n2 dimensional vectors.

In the semidefinite program above, X is the variable matrix of dimension n× n. The matrix C is called
the cost or objective matrix. Ai’s are the constraint matrices. C and Ai’s have the same dimension as X
(n× n). bi’s are scalars and the vector b (with bi) as components is known as constraint vector.

Many of the standard tricks used in linear programming to convert non-standard form into standard form
can also be used here. For example, converting inequalities into equalities, changing minimum to maximum
and change of variables.

Let us take a look at the following program,

max Tr(X)

s.t. X =

(
1 x
1 x

)
� 0.

Show that it is a semidefinite program. In other words, what are the constraint matrices and constraint
vector?

Exercise 1. Find the value of this semidefinite program.

Generalizing the above example, a semidefinite program can be viewed as,

– variables xi,j arranged in a matrix X,
– linear constraints and objective over these variable xi,j ,
– and the positive semidefinite constraint X � 0.

You will prove in the assignment that the positive semidefinite constraint can be viewed as infinite number
of linear constraints in variables xi,j . Look at another program,

inf /min x1

s.t.

(
x1 1
1 x2

)
� 0.

Exercise 2. Find the value of this semidefinite program.



1.1 Equivalent definitions

In general, many totally different looking programs can be transformed into a semidefinite program. Let us
take a look at few forms which arise often in practice.

Form with positive semidefinite constraints Another standard form for semidefinite programming is:

min bT y

s.t.
∑m

i=1 yiAi − C � 0

Let us take a look at why these two forms are equivalent. Denote the matrix
∑

i yiAi − C by a new
variable matrix Z.

Now the variables in the program are Z and the scalars yi’s. The linear constraints can be changed into

∀ i, j; zij =
∑
k

yk(Ak)ij .

Here zij are the entries of matrix Z. So, the program changes to,

min bT y

s.t. ∀ i, j; zij =
∑

k yk(Ak)ij

Z � 0

It almost looks like the standard form but variables yi’s do not occur in the semidefinite constraint.
Remember the old trick of converting unrestricted variables to positive variables.

Replace yi by two positive variables, i.e., yi = y′i − y′′i and y′i, y
′′
i ≥ 0. Now, these positive variables y′i, y

′′
i

can be put in a separate block and included in the semidefinite constraint.

min
∑

k bk(y′k − y′′k )

s.t. ∀ i, j; zij =
∑

k(y′k − y′′k )(Ak)ij

Z =



Z 0 0 0 0 0 0
0 y′1 · · · 0 0 0 0

0
...

. . .
... 0 0 0

0 0 0 y′m 0 0 0
0 0 0 0 y′′1 · · · 0

0 0 0 0
...

. . .
...

0 0 0 0 0 0 y′′m


� 0

You will show in the assignment that we don’t need explicit constraints on the off-diagonal being zero.

Gram matrix formulation We know that any n × n positive semidefinite matrix X can be written as
the gram matrix of vectors u1, u2, · · · , un. Suppose, our variable matrix X can be expressed as the gram
matrix of u1, · · · , un ∈ Rk. Notice that u1, u2, · · · , un are vector variables now and we have not imposed any
constraint on k.

Then the semidefinite program looks like,

max
∑

ij Ciju
T
i uj

s.t.
∑

ij A
(k)
ij u

T
i uj = bk, ∀k = 1, · · · ,m

We have removed the X � 0 constraint from the new form.
The new form can be understood as,
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– u1, u2, · · · , un as vector variables,
– and linear constraints over the inner product of these vector variables.

This form is specially useful in combinatorial optimization. The reason is, many problems can be expressed
as integer programs in combinatorial optimization. When you relax these variables to be vectors instead of
integers, this form arises naturally. We will see such an example later in the course.

Note 2. This is not a linear program, since constraints are on the inner-products.

2 Examples

Let us take a look at various natural problems which can be turned into a semidefinite program.

2.1 Minimizing the maximum eigenvalue

Suppose, we are given a matrix M(x), which depends affinely on the variables in x. That means every entry
in M(x) can be written as an affine function of variables in x (M(x)ij = a1x1 + · · ·+anxn + b). The problem
is to minimize the maximum eigenvalue of M(x) over all x, i.e.,

min
x

max
i
λi(M(x))

Clearly this is not in the standard form of SDP. The trick here is to introduce another variable η to change
min max to only min. Suppose λmax(M) represents the maximum eigenvalue of M , then

min η

s.t. η ≥ λmax(M(x))

Now use the fact that λmaxI −M(x) � 0. Hence,

min η

s.t. ηI −M(x) � 0

This is one of the alternative form discussed in the last section (why?). Here the variables are (η, x).

Exercise 3. Write an SDP to find the maximum eigenvalue of a matrix M .

2.2 Fan’s theorem

The sum of first k eigenvalues can also be written as a semidefinite program.

Theorem 1 (Fan). Given a symmetric matrix M and its eigenvalues λ1 ≥ λ2 · · · ≥ λn,

λ1 + λ2 + · · ·λk = maxM •X
s.t. tr(X) = k

I � X � 0

.

Proof. Say, M has spectral decomposition

λ1x1x
T
1 + · · ·+ λnxnx

T
n .

Taking X = x1x
T
1 +· · ·+xkxTk , we will get the objective value λ1+· · ·+λk. Since, we have a maximization

problem,
∑k

i=1 λi is a lower bound on the optimal value of the SDP. So, the only thing needed to prove the
theorem is: any feasible X gives value less than λ1 + · · ·+ λk.

Since M is a symmetric matrix, by spectral decomposition it has a complete basis of eigenvectors
(x1, · · · , xn span the entire space).
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Exercise 4. Show that M is diagonal in this basis with diagonal entries as eigenvalues.

Notice that the trace and positive semidefiniteness properties are preserved under change of basis.

Exercise 5. Show that tr(AB) = tr(BA), hence tr(UTBU) = tr(B) for any orthogonal U . Also show that if
B � 0 then UTBU � 0 for any orthogonal U .

Lets look at the semidefinite program in the theorem in this eigenvector basis. Then M •X =
∑

iXiiλi.
From the constraints, tr(X) = k and I � X � 0 (the identity matrix and zero matrix remain same under
any basis transformation). Since I −X � 0, all the entries Xii ≤ 1. Since X � 0, implies Xii ≥ 0. Consider
another optimization program (it is a linear program),

max
∑

i ziλi

s.t.
∑

i zi = k

1 ≥ zi ≥ 0.

By substituting zi = Xii it is clear that the value of this program is at least the value of the semidefinite
program in the theorem.

Exercise 6. Show that the maximum for this new program will occur on z’s which have exactly k non-zero
entries equal to 1.

If we are allowed to choose k co-ordinates, s.t.,
∑

i λizi is maximum, then the best choice is the first k
co-ordinates. Hence, the maximum value of this linear program is λ1 + · · ·+λk. This implies that maximum
value of the semidefinite program in Thm. 1 is λ1 + · · ·+ λk.

2.3 Linear programs as a special case

Linear programming is a special case of semidefinite programs. It is obtained by considering the diagonal
matrices in the standard form of semidefinite programming. Suppose the linear program is,

max cTx

s.t. aTi x = bi, ∀i = 1, · · · ,m
x ≥ 0.

in the standard form.
Look at the semidefinite program,

max C •X
s.t. Ai •X = bi, ∀i = 1, · · · ,m

X � 0;

Here, C is the diagonal matrix with entries from c and Ai’s are the diagonal matrices with diagonals ai.
Then the above mentioned two programs are actually equal.

Given a solution of the linear program, it can be converted into a solution for semidefinite program by
taking X to be the diagonal matrix with diagonal x. Similarly, if X is any solution for the semidefinite
program, then x = diag(X) will be a solution for the linear program with the same objective value.

Hence, any linear program can be converted into a semidefinite program by taking corresponding diagonal
matrices for the constraints as well as the objective matrix.
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2.4 Sum of squares

If a polynomial p(x) can be written as a sum of squares then it is clearly positive for all values of x (here
x = (x1, · · · , xn)). In general, this gives a sufficient condition for positivity of the polynomial. To check
whether a polynomial can be written as a sum of squares is a semidefinite programming feasibility problem.

To see this, first notice that a polynomial (of degree d) can be written as the dot product between two
vectors p(x) = pTxd. Here, xd is the list of all degree ≤ d monomials. Then p is the vector of coefficients
corresponding to those monomials.

Now, suppose p(x) =
∑

i qi(x)2, i.e., it can be written as the sum of squares. Say the degree of p is 2d.
Hence,

p(x) =
∑
i

qi(x)2 =
∑
i

xTd q
T
i qixd = xTd (

∑
i

qTi qi)xd

This shows that a polynomial is a sum of squares, iff, it can be written as xTdQxd for some positive
semidefinite Q. So, a polynomial is a sum of squares iff

p(x) = xTdQxd

Q � 0.

It might be confusing that why this is a semidefinite program. First, the constraint p(x) = xTdQxd is a
linear constraint on the elements of Q. Also the absence of max/min might be confusing. This kind of problem
without objective function and only constraint is called a semidefinite programming feasibility problem. It
is a special case of semidefinite programming (why ?).

This semidefinite program is important in giving bounds on the minimum value of a polynomial. Consider,

maxλ

s.t. p(x)− λ = xTdQxd

Q � 0.

The value of this program (say s∗) satisfies p(x) ≥ s∗ for all x. So, it gives a lower bound on the minimum
value of the polynomial.

This might not be the biggest s, s.t. p(x) ≥ s for all x; since the representation as sum of squares is only
a sufficient condition for positivity. Though if n = 1, this gives us the tight bound.

3 Assignment

Exercise 7. Show that semidefinite program can be viewed as an optimization problem with linear cost
function and infinite linear constraints.

Exercise 8. Prove that we don’t need to put the explicit constraint that the off-diagonal entries (blocks) are
zero, when we converted form with positive semidefinite constraint into standard form.

Exercise 9. Prove that for a single variate polynomial p, it is positive iff it can be written as a sum of squares
(Hint: Look at the factorization of p in complex domain).

Exercise 10. Show that the following problem can be converted into a SDP.

min (cT x)2

dT x

s.t. Ax+ b ≥ 0

Here, x is a vector and c, d are vectors of the same dimension as x.
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