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The main aim of this lecture note is to prepare your background for semidefinite programming. We have
already seen some linear algebra. Now, we will see the concept of eigenvalues and eigenvectors, spectral
decomposition and special classes of matrices. The class of positive semidefinite matrices will be of special
interest to us. We will look at the properties of positive semidefinite matrices and the cone formed by them.

Remember, matrices are linear operators and every linear operator can be represented by a matrix (if we
fix the basis). There were two important theorems that we covered earlier.

Theorem 1. Let M be an m × n matrix. The dimension of the image of M is known as the rank of M
(rank(M)) and the dimension of kernel of M is known as the nullity of M (nullity(M)). By the famous
rank-nullity theorem,

rank(M) + nullity(M) = n.

Theorem 2. The column rank of a matrix M is same as the row rank of M .

1 Eigenvalues and eigenvectors

Consider two vector spaces V and W over real numbers. A matrix M ∈ L(V,W ) is square if dim(V ) =
dim(W ). In particular, a matrix M ∈ L(V ) is always square.

Consider a matrix M ∈ L(V ), any vector v ∈ V satisfying,

Mv = λv for some λ ∈ R,

is called the eigenvector of matrix M with eigenvalue λ.

Exercise 1. Given two eigenvectors v, w, when is their linear combination an eigenvector itself?

The previous exercise can be used to show that all the eigenvectors corresponding to a particular eigen-
value form a subspace. This subspace is called the eigenspace of the corresponding eigenvalue.

An eigenvalue λ of an n× n matrix M satisfies the equation

det(λI −M) = 0,

where det(M) denotes the determinant of the matrix M . The polynomial det(λI −M) = 0, in λ, is called
the characteristic polynomial of M . The characteristic polynomial has degree n and will have n roots in the
field of complex numbers. Though, these roots might not be real.

It can be shown that if λ is a root of characteristic polynomial then there exist at least one eigenvector
corresponding to λ. We leave it as an exercise.

Exercise 2. Give an example of a matrix with no real roots of the characteristic polynomial.

The next theorem says that eigenvalues are preserved under basis transformation.

Theorem 3. Given a matrix P of full rank, matrix M and matrix P−1MP have the same set of eigenvalues.

Proof. Suppose λ is an eigenvalue of P−1MP , we need to show that it is an eigenvalue for M too. Say λ is
an eigenvalue with eigenvector v. Then,

P−1MPv = λv ⇒M(Pv) = λPv.



Hence Pv is an eigenvector with eigenvalue λ.
The opposite direction follows similarly. Given an eigenvector v of M , it can be shown that P−1v is an

eigenvector of P−1MP .
P−1MP (P−1v) = P−1Mv = λP−1v

Hence proved.

Exercise 3. Where did we use the fact that P is a full rank matrix?

2 Spectral decomposition

Exercise 4. Let v1, v2 be two eigenvectors of a matrix M with distinct eigenvalues. Show that these two
eigenvectors are linearly independent.

This exercise also shows: sum of the dimensions of eigenspaces of an n× n matrix M can’t exceed n.
Given an n× n matrix M , it need not have n linearly independent eigenvectors. The matrix M is called

diagonalizable iff the set of eigenvectors of M span the complete space Rn.
For a diagonalizable matrix, the basis of eigenvectors need not be an orthogonal basis. We will be

interested in matrices which have an orthonormal basis of eigenvectors.
Suppose a matrix M has an orthonormal basis of eigenvectors. Let λ1, λ2, · · · , λn ∈ R be the n eigenvalues

with the corresponding eigenvectors u1, u2, · · · , un. Define D to be the diagonal matrix with Dii = λi for
every i. Let U be the matrix with i-th column being ui. Since ui’s are orthonormal, UT = U−1.

Exercise 5. Show that M = UDUT . Remember, to show that two matrices are same, we only need to show
that their action on a basis is same.

So, if a matrix M has an orthonormal set of eigenvectors, then it can be written as UDUT . This implies
that M = MT . We call such matrices symmetric.

What about the reverse direction? Spectral decomposition shows that every symmetric matrix has an
orthonormal set of eigenvectors. Before proving spectral decomposition, let us look at the eigenvalues and
eigenvectors of a symmetric matrix.

Lemma 1. Let Mu = λ1u and Mw = λ2w, where λ1 and λ2 are not equal. Then

uTw = 0.

Proof. Notice that λ1, λ2, u, w need not be real. From the conditions given in the lemma,

λ1u
Tw = (Mu)Tw = uT (Mw) = λ2u

Tw.

Where did we use the fact that M is symmetric?
Since λ1 6= λ2, we get that uTw = 0.

Let M be a symmetric matrix. A priori, it is not even clear that all the roots of det(M − λI) are real.
Let us first prove that all roots of the characteristic polynomial are real.

Lemma 2. Given an n× n symmetric matrix M , all roots of det(λI −M) are real.

Proof. Let λ be a root of det(λI −M). Suppose it is not real,

λ = a+ ib, where b 6= 0.

Since λI −M is zero, the kernel of λI −M is not empty. Hence, there exists a vector v = x + iy, such
that

M(x+ iy) = (a+ ib)(x+ iy).

Taking the adjoint of this equation and noting M∗ = M (M is real and symmetric),

M(x− iy) = (a− ib)(x− iy).

Using Lem. 1, we know that x+ iy and x− iy should be orthogonal to each other.
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Exercise 6. Prove that x+ iy and x− iy can not be orthogonal to each other by taking their inner product.

Now we are ready to prove spectral decomposition.

Theorem 4. Spectral decomposition: For a symmetric matrix M ∈ Rn×n, there exists an orthonormal basis
x1, · · · , xn of Rn, s.t.,

M =

n∑
i=1

λixix
T
i .

Here, λi ∈ R for all i.

Note 1. It means that any symmetric matrix M = UTDU . Here D is the diagonal matrix with eigenvalues
and U is the matrix with columns as eigenvectors.

Exercise 7. Show that xi is an eigenvector of M with eigenvalue λi.

Note 2. uTw is a scalar, but uwT is a matrix.

Note 3. The λi’s need not be different. If we collect all the xi’s corresponding to a particular eigenvalue λ,
the space spanned by those xi’s is the eigenspace of λ.

Proof of Thm. 4. Proof of spectral theorem essentially hinges on the following lemma.

Lemma 3. Given an eigenspace S (of eigenvalue λ) of a symmetric matrix M , the matrix M acts on the
space S and S⊥ separately. In other words, Mv ∈ S if v ∈ S and Mv ∈ S⊥ if v ∈ S⊥.

Proof of lemma. Since S is an eigenspace, Mv ∈ S if v ∈ S. This shows that MT preserves the subspace S.
Suppose v1 ∈ S⊥, v2 ∈ S, then Mv2 = MT v2 ∈ S. So,

0 = vT1 M
T v2 = (Mv1)T (v2).

This shows that Mv1 ∈ S⊥. Hence, matrix M acts separately on S and S⊥.

We have already shown that the eigenvectors of a symmetric matrix corresponding to different eigenvalues
are orthogonal (Lem. 1). Also, it was shown that every root of the characteristic polynomial is real, so there
are n real roots (Lem. 2). Though some roots might be present with multiplicities more than 1.

Assume that we list out all possible eigenvalues λ1, λ2, · · · , λk with their eigenspaces P1, P2, · · · , Pk. If∑k
i=1 dim(Pi) = n, then we are done. If not say the remaining space is Pk+1.
Since eigenvalues do not change under a basis transformation (Thm. 3), we can look at M in the bases

of P1, P2, · · · , Pk+1. Lem. 3 implies that matrix M looks like,

λ1
λ1

. . .

λk
. . .

λk
C


.

We can assume that C is non-zero (why?). Then fundamental theorem of algebra says that det(λI − C)
has a root. Since that will also be a root of det(λI −M), it has to be real. But then this real root will
have at least one eigenvector. This is a contradiction, since we had listed all possible eigenvalues and their
eigenspaces.
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Exercise 8. Given the spectral decomposition of M , what is the spectral decomposition of MT ?

It was shown before that any matrix with orthonormal set of eigenvectors is a symmetric matrix. Hence,
spectral decomposition provides another characterization of symmetric matrices.

Clearly the spectral decomposition is not unique (essentially because of the multiplicity of eigenvalues).
But the eigenspaces corresponding to each eigenvalue are fixed. So there is a unique decomposition in terms
of eigenspaces and then any orthonormal basis of these eigenspaces can be chosen.

2.1 Orthogonal matrices

A matrixM is orthogonal ifMMT = MTM = I. In other words, the columns ofM form an orthonormal basis
of the whole space. Orthogonal matrices need not be symmetric, so roots of their characteristic polynomial
need not be real. For an orthogonal matrix, M−1 = MT .

Exercise 9. Give an example of an orthogonal matrix which is not symmetric.

Orthogonal matrices can be viewed as matrices which implement a change of basis. Hence, they preserve
the angle (inner product) between the vectors. So for an orthogonal M ,

uT v = (Mu)T (Mv).

Exercise 10. Prove the above equation.

If two matrices A,B are related by A = M−1BM , where M is orthogonal, then they are called orthogo-
nally similar. If two matrices are orthogonally similar then they are similar.

Spectral theorem can be stated as the fact that symmetric matrices are orthogonally similar to a diagonal
matrix. In this case, the diagonal of the diagonal matrix contains the eigenvalues of the symmetric matrix.

Exercise 11. What is the rank of an orthogonal matrix?

3 Extra reading: singular value decomposition

Singular value decomposition is one of the most important factorizations of a matrix. The statement says,

Theorem 5. Given a linear operator M in L(V,W ). There exists a decomposition of the form:

M =

r∑
i=1

siyix
T
i

Where x1, · · · , xr (called right singular vectors) and y1, · · · , yr (called left singular vectors) are orthonormal
basis of V and W respectively. The numbers s1, · · · , sr (called singular values) are positive real numbers and
r itself is the rank of the matrix M .

The statement of the theorem can also be written as M = A∆BT , where A ∈ L(W ), B ∈ L(V ) are
orthogonal matrices and ∆ is the diagonal matrix of singular values. With this interpretation, any linear
operation can be viewed as rotation in subspace V then scaling the standard basis and then another rotation
in W subspace.

The statement of singular value decomposition is easy to prove if we don’t need any condition on yi’s. Any
basis of V will be sufficient to construct such a decomposition (why?). We can even choose all singular values
to be 1 in that case. But it turns out that with the singular values we can make the yi’s to be orthonormal.

The proof of singular value decomposition follows by applying spectral decomposition on matrices MMT

and MTM . Note that if v is an eigenvector of MMT then Mv is an eigenvector of MTM . Hence, MTM
and MMT have the same set of eigenvalues.

Suppose the eigenvectors of MTM are xi’s for eigenvalues λi, then eigenvectors of MMT are Mxi

‖Mxi‖ = yi’s.
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Exercise 12. Prove the above statement.

If we reduce A to its row echelon form, it can be seen that rank(A) = rank(ATA). Hence, it is enough
to specify the action of M on xi’s. So,

M =

r∑
i=1

‖Mxi‖yixTi

Exercise 13. Prove that ‖Mxi‖ =
√
λi.

This implies the singular value decomposition.

M =

r∑
i=1

√
λiyix

T
i =

r∑
i=1

siyixi.

The eigenvectors of MMT are left singular vectors and eigenvectors of MTM are right singular vectors
of M . The eigenvalues of MMT or MTM are the squares of the singular values of M .

4 Positive semidefinite matrices

A matrix M is called positive semidefinite if it is symmetric and all its eigenvalues are non-negative. If all
eigenvalues are strictly positive then it is called a positive definite matrix.

In many references, you might find another definition of positive semidefiniteness. A matrix M ∈ L(V )
will be called positive semidefinite iff,

1. M is symmetric,
2. vTMv ≥ 0 for all v ∈ V .

If the matrix is symmetric and
vTMv > 0, ∀v ∈ V,

then it is called positive definite. When the matrix satisfies opposite inequality it is called negative definite.
The two definitions for positive semidefinite matrix turn out be equivalent. In the next theorem, we

identify many different definitions of positive semidefinite matrices to be equivalent.

Theorem 6. For a symmetric n× n matrix M ∈ L(V ), following are equivalent.

1. vTMv ≥ 0 for all v ∈ V .
2. All the eigenvalues are non-negative.
3. There exist a matrix B, s.t., BTB = M .
4. Gram matrix of vectors u1, · · · , un ∈ U , where U is some vector space. Hence

∀i, j : Mi,j = vTi vj .

Proof. 1 ⇒ 2: Say λ is an eigenvalue of M . Then there exist eigenvector v ∈ V , s.t., Mv = λv. So 0 ≤
vTMv = λvT v. Since vT v is positive for all v, implies λ is non-negative.

2⇒ 3: Since the matrix M is symmetric, it has a spectral decomposition.

M =
∑
i

λixix
T
i

Define yi =
√
λixi. This definition is possible because λi’s are non-negative. Then,

M =
∑
i

yiy
T
i .

5



Define B to be the matrix whose columns are yi. Then it is clear that BTB = M . From this construction,
B’s columns are orthogonal. In general, any matrix of the form BTB is positive semi-definite. The matrix
B need not have orthogonal columns (it can even be rectangular).

But this representation is not unique and there always exists a matrix B with orthogonal columns for
M , s.t., BTB = M . This decomposition is unique if B is positive semidefinite. The positive semidefinite B,
s.t., BTB = M , is called the square root of M .

Exercise 14. Prove that the square root of a matrix is unique.

Hint: Use the spectral decomposition to find one of the square root. Suppose A is any square root of M .
Then use the spectral decomposition of A and show the square root is unique (remember the decomposition
to eigenspaces is unique) .

3 ⇒ 4: We are given a matrix B, s.t., BTB = M . Say the rows of B are u1, · · · , un. Then, from the
definition of matrix multiplication,

∀i, j : Mi,j = vTi vj

Exercise 15. Show that for a positive semidefinite matrix M ∈ L(V ), there exists v1, · · · , vn ∈ V , s.t, M is
a gram matrix of v1 · · · , vn.

4⇒ 1: Suppose M is the gram matrix of vectors u1, · · · , un. Then,

xTMx =
∑
i,j

Mi,jxixj =
∑
i,j

xixj(v
T
i vj),

where xi is the ith element of vector x. Define y =
∑
i xivi, then,

0 ≥ yT y =
∑
i,j

xixj(v
T
i vj) = xTMx.

Hence xTMx ≥ 0 for all x.

Exercise 16. Prove that 2⇒ 1 and 3⇒ 1 directly.

Remark: A matrix M of the form M =
∑
i xix

T
i is positive semidefinite (Exercise: Prove it), even if xi’s

are not orthogonal to each other.
Remark: A matrix of the form yxT is a rank one matrix. It is rank one because all columns are scalar

multiples of y. Similarly, all rank one matrices can be expressed in this form.

Exercise 17. A rank one matrix yxT is positive semi-definite iff y is a positive scalar multiple of x.

4.1 Some examples

– An n×n identity matrix is positive semidefinite. It has rank n. All the eigenvalues are 1 and every vector
is an eigenvector. It is the only matrix with all eigenvalues 1 (prove it).

– The all 1’s matrix J (n× n) is a rank one positive semidefinite matrix. It has one eigenvalue n and rest
are zero.

– The matrix

M =

(
1 −1
−1 1

)
,

is positive semidefinite. Because, the quadratic form xTMx = (x1−x2)2, where x1, x2 are two components
of x.

– Suppose any symmetric matrix M has maximum eigenvalue λ. The matrix λ′I −M , where λ′ ≥ λ is
positive semidefinite.
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5 Properties of semidefinite matrices

Positive semidefinite matrices are symmetric matrices whose eigenvalues are non-negative. They can also
be thought of as the gram matrix of a set of vectors. Let us look at their special properties and the cone
generated by them.

5.1 Principal submatrix

A principal submatrix P of a matrix M is obtained by selecting a subset of rows and the same subset of
columns. If M is positive semidefinite then all its principal submatrices are also positive semidefinite.

This follows by considering the quadratic form xTMx and looking at the components of x corresponding
to the defining subset of principal submatrix. The converse is trivially true.

Exercise 18. Show that the determinant of a positive semidefinite matrix is non-negative. Hence, show that
all the principal minors are non-negative. Actually the converse also holds true, i.e., if all the principal minors
are non-negative then the matrix is positive semidefinite.

5.2 Diagonal elements

If the matrix is positive semidefinite then its diagonal elements should dominate the non-diagonal elements.
The quadratic form for M is,

xTMx =
∑
i,j

Mi,jxixj . (1)

Here xi’s are the respective components of x. If M is positive semidefinite then Eqn. 1 should be non-
negative for every choice of x.

By choosing x to be a standard basis vector ei, we get Mii ≥ 0, ∀i. Hence, all diagonal elements are
non-negative and tr(M) ≥ 0. If x is chosen to have only two nonzero entries, let’s say at i and j position,
then Eqn. 1 implies,

Mi,j ≤
√
MiiMjj ≤

Mii +Mjj

2
.

Where the second inequality follows from AM-GM inequality. This shows that any off diagonal element is
less than the diagonal element in its row or in its column.

5.3 Composition of semidefinite matrices

– The direct sum matrix A⊕B, (
A 0
0 B

)
,

is positive semidefinite iff A and B both are positive semidefinite. This can most easily be seen by looking
at the quadratic form xT (A⊕B)x. Divide x into x1 and x2 of the required dimensions, then

xT (A⊕B)x = xT1 Ax1 + xT2 Bx2.

– The tensor product A ⊗ B is positive semidefinite iff A and B are both positive semidefinite or both
are negative semidefinite. This follows from the fact that given the eigenvalues λ1, · · · , λn for A and
µ1, · · · , µm for B; the eigenvalues of A⊗B are

∀i, j : λiµj .

– The sum of two positive semidefinite matrices is positive semidefinite.
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– The product of two positive semidefinite matrices need not be positive semidefinite.

Exercise 19. Give an example of two positive semidefinite matrices whose product is not positive semidef-
inite.

– The Hadamard product of two positive semidefinite matrices A and B, A◦B, is also positive semidefinite.
Since A and B are positive semidefinite for some vectors u1, · · · , un and v1, · · · vn. The Hadamard matrix
will be the gram matrix of ui ⊗ vi’s. Hence it will be positive semidefinite.

– The inverse of a positive definite matrix is positive definite. The eigenvalues of the inverse are inverses
of the eigenvalues.

– The matrix PTMP is positive semidefinite if M is positive semidefinite.

5.4 Schur’s complement

Given a 2× 2 block matrix,

M =

(
A B
C D

)
,

the Schur complement of the matrix D in M is A − BD−1C. This gives a criteria to decide if a 2 × 2
symmetric block matrix is positive definite or not.

Theorem 7. Suppose M is a symmetric 2× 2 block matrix,

M =

(
A B
BT D

)
.

It is positive definite iff D and the Schur complement A−BD−1BT , both are positive definite.

Proof. Notice that,

M =

(
I BD−1

0 I

)(
A−BD−1BT 0

0 D

)(
I BD−1

0 I

)T
(2)

It is known that, (
I BD−1

0 I

)−1
=

(
I −BD−1
0 I

)
.

Hence M = PTNP where P is invertible and N is a block diagonal matrix. So M is positive definite if
and only if N is positive definite. It is easy to check when a block diagonal matrix is positive definite. That
exactly gives us that D and the Schur complement, A−BD−1BT , both have to be positive definite.

Exercise 20. Given a matrix,

M =

(
I B
B I

)
,

where B is symmetric, show that it is positive definite iff I ±B � 0.

6 Positive semidefinite cone

Consider the vector space of symmetric n×n matrices, R
n(n+1)

2 . We focus on the set of positive semidefinite
matrices in this space.

It was seen that if M,N are positive semidefinite, then αM +βN is also positive semidefinite for positive

α, β. Hence, the set of positive semidefinite matrices is a convex cone in R
n(n+1)

2 . The cone is denoted Sn.
If M � 0 then −M is not positive semi-definite. So the cone Sn does not contain a line. If we look at the

positive definite matrices. They form the interior of the cone. To prove this, we show that for any positive
definite matrix M , there exist a ball of size ε centered at M and contained in the cone of positive semidefinite
matrices.
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Theorem 8. If given an n×n matrix M � 0 (positive definite). Then, M − εN � 0 for small enough ε and
all symmetric N whose norm is 1.

Proof. The norm of N is 1, i.e., N •N = 1. So, every entry of N is at-most 1 (exercise: why ?). For every
unit vector v, every element is bounded by 1 too. So vTNv =

∑
i,j vivjNij ≤ n2.

Exercise 21. The choice ε = λn

2n2 will work, where λn is the least eigenvalue of M .

Identity is positive definite, so interior is not empty.
Hence, Sn is a convex cone that does not contain a line and has non-empty interior. This implies that

the cone Sn is proper. Define the generalized inequality with respect to this cone.

M � N ⇔M −N � 0

The positive semidefinite cone is generated by all rank one matrices xxT . They form the extreme rays
of the cone. The positive definite matrices lie in the interior of the cone. The positive semidefinite matrices
with at least one zero eigenvalue are on the boundary.

7 Assignment

Exercise 22. Prove that if λ is a root of the characteristic polynomial, then there exist at least one eigenvector
for λ.

Exercise 23. Show that the matrix M and MT have the same singular values.

Exercise 24. Read about polar decomposition and prove it using singular value decomposition.

Exercise 25. Read about tensor product of two matrices in Wikipedia.

Exercise 26. What are the eigenvalues of A ⊗ B, where A,B are symmetric matrices and ⊗ denotes the
tensor product?

Exercise 27. Give a characterization of the linear operators over V ⊗W in terms of linear operators over V
and W . Remember that they form a vector space.

Exercise 28. Show that 〈v|A|w〉 =
∑
ij Aijv

∗
iwj .

Exercise 29. The multiplicity of a root of characteristic polynomial is known as the algebraic multiplicity. The
dimension of the eigenspace of that root is known as the geometric multiplicity. It is known that geometric
multiplicity is less than algebraic multiplicity.

Show that the geometric multiplicity is same as algebraic multiplicity for a symmetric matrix M .
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