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The objective of this lecture note will be to learn duality theory of linear programming. We are planning
to answer following questions.

– What are hyperplane separation theorems?
– What is Farkas lemma?
– How do we define the dual of a linear program?

For this lecture, it will be helpful to know the definitions of open, closed and compact sets. We will only
require the geometric intuition behind these definitions.

To begin, we will state another useful property of convex sets: there exists a closest point in a convex set
for any point outside the convex set. The concept of orthogonal projection is known to us in the context of
linear subspaces. Given a point x outside a linear subspace L, the projection of x on L is the closest point
inside the subspace L to x. This concept can be extended to have the closest point to x with respect to a
convex set C.

Lemma 1. Suppose x is a point outside a non-empty closed convex set C. Then there exist a unique point
C(x), on the boundary of C, which is closer to x than any other point in C. Say d(x, y) denote the Euclidean
distance between x and y.

d(x,C(x)) < d(x, y) ∀ y 6= x ∈ C

Note 1. We will omit the proof of this lemma, but the uniqueness part can be shown easily.
For the relevance of this theorem, note that this is not true for open concave sets. For example, take all

points in Rn not in a circle. The uniqueness is lost if x is the center of the circle.

Exercise 1. Come up with a closed concave set which does not satisfy the theorem above.

Exercise 2. Come up with an example to prove that C is required to be closed in the lemma.

1 Separating hyperplanes

Given a point x and a set of points C, how can we possibly prove that x is not part of C?
Suppose there exist a vector a and a scalar b, s.t., aTx > b. If it can be shown that aT y ≤ b for every y ∈ C,

this gives a mathematical proof that x is not part of C. We can say that a, b (which define a hyperplane)
separate x and C. But can we find such a, b all the time?

Exercise 3. Show that there exist C and x /∈ C, s.t., no a, b separate them.

It turns out that this is always possible if C is a closed convex set. Even for two closed convex sets C1

and C2, non-intersecting, similar separation can be found.

Exercise 4. Give an example of two sets which cannot be separated.

Lets define this notion of separation more formally. A hyperplane aTx− b = 0 separates sets C and D, if

aTx− b ≥ 0, ∀x ∈ C and aTx− b ≤ 0, ∀x ∈ D.



Fig. 1. Convex sets and hyperplanes separating them

Fig. 2. Non-convex sets
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We will be interested in the case when both the convex sets are not contained in the hyperplane (proper
separation). A stronger separation can be defined by taking strict inequalities. The separation is called a
strict separation if strict inequalities hold on both sides.

aTx− b > 0, ∀x ∈ C and aTx− b < 0, ∀x ∈ D.

Similar to separation there is a concept of supporting hyperplane. Given a convex set C and a point x
on the boundary, a hyperplane with normal a is supporting at x, iff,

– The hyperplane passes through x.

– The set lies on one side of the hyperplane, ∀ y ∈ C : aTx ≥ aT y.

There is a general theorem that two disjoint convex sets can be separated by a hyperplane. Depending
on the convex sets the kind of separation can be different.

Similarly, given a point on the boundary of a closed convex set, we can always draw a supporting
hyperplane through it.

Geometrically, suppose we are given a convex set and a point on the boundary of the convex set. It is
always possible to draw a tangential hyperplane through the point so that the convex set lies only on one
side of the hyperplane. Below we look at various cases.

1.1 Two convex sets

Theorem 1. Given two convex sets C and D, which are mutually disjoint, there always exists a hyperplane
aTx− b = 0 separating them. Hence,

aTx− b ≥ 0, ∀x ∈ C and aTx− b ≤ 0, ∀x ∈ D.

Note 2. The separation here is not strict.

Exercise 5. Construct two convex sets where separation cannot be strict.

We will show the proof for the case when at least one of the sets is compact and the other one is at least
closed. We will mostly be dealing with such situations in future.

Proof. In this case actually strict separation can be achieved. Since one set is compact and other is closed,
there exist two points c ∈ C and d ∈ D whose distance is minimum among any pair of points, one from C
(say this is compact) and one from D. This distance can’t be zero since C and D are mutually disjoint.

This statement seems quite intuitive but requires a proof. For people with a background of analysis
(others can assume this statement), this follows from the fact that d(x,D) (the minimum distance of point x
from set D, which exists by Lemma 1) is a continuous function on a compact set C and hence its minimum
should exist. For others, this statement can be assumed.

Let us look at the perpendicular bisector of the line between c and d. This will be the separating
hyperplane.

We will show that if ∃ x ∈ C, s.t., (c− d)Tx < (c− d)T c then c and d are not the closest points.

Exercise 6. Why is it enough to show that for all points x in C, (c− d)Tx ≥ (c− d)T c. Hint: c− d is normal
to the perpendicular bisector of the line between c and d.

So, suppose there exists a point x ∈ C, s.t.,

(c− d)Tx < (c− d)T c (1)
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Fig. 3. Closest points

Since C is convex, for every θ ∈ [0, 1], point θx + (1 − θ)c lies in C. What is the distance between this
point and d? Consider,

‖d− (θx+ (1− θ)c)‖2

= ‖(d− c)− θ(x− c)‖2

= ‖d− c‖2 + θ2‖x− c‖2 − 2θ(d− c)T (x− c)
= ‖d− c‖2 + θ2‖x− c‖2 − 2θ(c− d)T (c− x)

The last term 2θ(c− d)T (c− x) is positive because of our assumption, Eq. 1. Hence, by choosing θ small
enough, we can make sure that the distance between point θx + (1 − θ)c and d is less than the distance
between c and d. This gives us the contradiction.

Exercise 7. What is the exact value of θ at which this will happen?

1.2 A point and a convex set

Our next example will be a point and a convex set. In this case we get a strict separation by the hyperplane,
s.t., point lies on one side of the hyperplane and the set on the other side. Here strict means both the point
and the set are disjoint with the hyperplane.

Theorem 2. Given a closed convex set C and a point p. There always exist a hyperplane H = aTx − b
which strictly separates them. So aT p− b > 0 and aTx− b < 0, ∀x ∈ C.

The proof follows by constructing a small enough ball around point p which is compact and disjoint with
C. The result follows from Thm. 1 then.

Corollary 1. Any closed convex set is the intersection of all the half spaces which contain it.

Proof is left as an exercise. The set of half spaces can be restricted to all the supporting hyperplanes.
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1.3 Farkas lemma: A point and a cone

A special case of the previous section is the separation between a point and a finitely generated cone.
Remember that a finitely generated cone is convex. The proof follows from the previous theorems, but it will
be instructive to see another proof of this.

Lemma 2 (Farkas). Given a set of vectors x1, · · · , xk ∈ Rn (equivalently C ∈ Rn×k) and a point b ∈ Rn.
Exactly one of the following two conditions are satisfied.

1. ∃ α ∈ Rk
+ (α in positive orthant), such that, b = Cα.

2. ∃ a ∈ Rn, such that, aT b > 0 and aTC ≤ 0 (entrywise).

Note 3. The inequality is strict (strict separation) and the hyperplane is of special kind.

Proof. It is clear that both conditions cannot be satisfied simultaneously. Because then,

0 ≥ aTC
⇒ 0 ≥ aTCα
⇒ 0 > aT b.

which is a contradiction.
Suppose b can’t be written as the conic combination of columns of C, i.e., first condition does not hold.

Then look at cone generated by columns of C. It is finitely generated cone and hence by Weyl’s theorem, it
can be expressed as a bunch of inequalities,

Cone(x1, · · · , xk) = {x : Ax ≤ 0}.

Because b is not a member of this cone, there exists a row of A whose inner product with b is strictly positive
(call it ai). Then aTi b > 0 and ∀i, aTi xi ≤ 0⇒ aTi C ≤ 0.

Exercise 8. Interpret Farkas lemma as a hyperplane separation theorem. What do you know about this
hyperplane?

This theorem converts the membership question in a cone to finding a separating hyperplane question.
The question of membership in the cone is of real importance in convex optimization. It can be shown that
optimization over a cone can be done using polynomially many calls to membership/separation algorithm
for the cone.

2 Dual of a linear program

One of the strongest aspect of linear optimization is the presence of duality theory. The dual of a program is
another linear optimization program which provides tight upper/lower bounds on the original linear program.

We will motivate the duality theory by showing how to take the dual of a linear program. Suppose there
is a linear program,

max 2x1 + 3x2 + x3

s.t. x1 + x2 + x3 = 5

x1 + 2x2 = 10

x1, x2, x3 ≥ 0.

What is the value of this program? On a close inspection, it will be clear that the objective function is a
linear combination of constraints. Hence whatever be the feasible solution, the objective value will be 15.

Notice that it is required to have a feasible solution. In case there is no feasible solution then the objective
value of the program will be −∞. Remember that if a max optimization program does not have a feasible
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solution then its optimal value is −∞ and if the min optimization program is infeasible then its optimal
value is +∞.

Let’s take another example,

max 2x1 + 3x2 + x3

s.t. x1 + x2 + x3 = 5

x1 + 2x2 + x3 = 10

x1, x2, x3 ≥ 0.

In this case it is not clear if 15 is the optimal value. But since x3 ≥ 0, the objective value is ≤ 15−x3 and
hence lesser than or equal to 15. So 15 is an upper bound on the objective value. Lets make this argument
more precise. Suppose,

max cTx

s.t. Ax = b

x ≥ 0, (2)

is a linear program. If there exist a linear combination of constraints, say y, s.t., AT y = c. Then bT y will
be the optimal value of the program (given that there exists a feasible solution). But getting AT y = c every
time is not easy. Instead, if AT y ≥ c, then also bT y is an upper bound on the value of the program.

Since we want to consider the best upper bound.

min bT y

s.t. AT y ≥ c (3)

From the way this program is constructed, the optimal value of Eqn. 3 is always higher than optimal
value of Eqn. 2.

Eqn. 2 is known as the primal linear program. Eqn. 3 is known as the dual linear program.

Exercise 9. What is the dual if the constraint was Ax ≤ b instead of Ax = b in the primal linear program?

The argument above showed that the dual objective value is higher than the primal objective value. This
is known as the weak duality. In case of linear programs it is known that actually dual value is always same
as the primal value if primal has a feasible solution. This is known as strong duality.

The terms primal and dual are interchangeable. The dual of the dual is the primal program. So if Eqn. 3
is considered as the primal program then the dual will be Eqn. 2.

One important thing to notice is that for every primal constraint there is a dual variable and for every
primal variable there is a dual constraint. This relationship is much more stronger than it seems now.

Exercise 10. Find the dual of the following linear program.

max cTx

s.t. Ax ≥ b
x ≤ 0,

Exercise 11. What is the relationship between dual and separating hyperplanes?

For easier access to taking dual, this table might be helpful.

Primal variable to dual constraint Primal constraint to dual variable
Max ≥→≥, ≤→≤, unrestricted →= ≥→≤, ≤→≥, =→ unrestricted
Min ≥→≤, ≤→≥, unrestricted →= ≥→≥, ≤→≤, =→ unrestricted

Exercise 12. Verify that the table is correct.
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3 Complementary slackness

In the last section we saw how to formulate a dual program from a linear program. From the formulation,
it turned out that the dual program gave an upper/lower bound depending on whether the problem was
maximization/minimization respectively.

The strength of duality theory lies in the fact that these bounds are in fact tight. This implies that
the dual value always agrees with the primal value. This fact has been useful in numerous applications in
computer science. Let us study this relationship in detail.

Note 4. The fact that these bounds are tight only holds true for linear programming. For other convex
programming instances, we need to be careful.

Let’s look at the primal-dual pair for a linear program.

Primal

max cTx

s.t. Ax ≤ b
x ≥ 0

Dual

min yT b

s.t. AT y − c ≥ 0

y ≥ 0

First, it is instructive to see the direct proof of weak duality. Given any feasible solution X for primal
and y for dual,

cTx ≤ yTAx ≤
∑
i

yibi = yT b. (4)

Note 5. Above equation implies, all feasible solutions of dual give an upper bound on the optimal value of
primal. Similarly any feasible solution for primal gives a lower bound on the optimal value of dual.

Suppose the optimal value of primal is p∗, attained at x∗. Similarly the optimal value of dual is d∗ and
obtained for y∗. Weak duality implies that p∗ ≤ d∗. Assume that this two values are equal, i.e., p∗ = d∗

(strong duality, Thm. 3). Then, from Eqn. 4,

(AT y∗ − c)Tx∗ = 0 and (Ax∗ − b)T y∗ = 0. (5)

The conditions above are called the complementary slackness condition. So, for optimal x∗, y∗ with strong
duality, the complementary slackness condition holds. Conversely, if x, y are feasible solutions of primal and
dual respectively and satisfy the complementary slackness condition then strong duality holds and p∗ = d∗.

What does the complementary slackness conditions tell us?

– Given an optimal solution x∗ for the primal, if x∗i 6= 0 then aTi y − ci = 0, where ai is the ith column of
A. In other words, if the primal optimal variable is non-zero, then the corresponding constraint in dual
is tight.

– Given an optimal solution y∗ for the dual, if y∗j 6= 0 then aTj x− bj = 0, where aj is the jth column of A.
In other words, if the dual optimal variable is non-zero, then the corresponding constraint in primal is
tight.

If we write aTi y − ci = wi (ai’s are column) and aTj x − bj = zj (aj ’s are rows) as slack variables. Then
for primal and dual both we have m+n variables. Complementary slackness tells us that out of these m+n
variables, if a primal variable is non-zero then the corresponding dual variable is 0.
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4 Extra reading: strong duality

Strong duality states that the optimal value of primal is same as optimal value of dual. The next theorem
states that strong duality holds for all linear programs. We look at the following format of primal and dual,

max cTx

s.t. Ax− b = 0

x ≥ 0

min bT y

s.t. AT y − c ≥ 0

Theorem 3. Given a linear program in above format with parameters c, A, b (say ai is the ith row of A),
suppose the feasible set of primal is P and feasible set of dual is D. Then one of the following is true,

– If P is empty (primal infeasible), then dual is unbounded or infeasible.

– If D is empty (dual infeasible), then primal is unbounded or infeasible.

– If both D,P are non-empty, then strong duality holds. So for optimal x∗, y∗, p∗ = cTx∗ = bT y∗ = d∗.

In other words, if any one of primal or dual is feasible and bounded then strong duality holds. The proof
is based on Farkas Lemma.

Proof. Suppose P is empty. By Farkas lemma, there exist y, s.t., bT y < 0, AT y ≥ 0. If dual is infeasible, then
there is nothing to prove, else there exist y′ : AT y′ ≥ c.

Exercise 13. Show that using y, y′, z′is can be constructed, s.t., AT zi ≥ c, bT zi → −∞ as i→∞.

From the previous exercise, dual is unbounded. Similarly the case of D being empty can be dealt.

Exercise 14. Show that if primal is unbounded, then dual is infeasible.

So assume now that both P,D are non-empty and the optimal value is bounded. Say p∗ (d∗) are the
optimal values achieved at x∗ (y∗ respectively).

Since p∗ is optimal, there does not exist x, s.t., (Ax, cTx) = (b, p∗ + ε) (for any ε > 0). Considering
A′ = (A, c) and b′ = (b, p∗ + ε), the Farkas lemma implies,

∃y : A′T y ≤ 0 and b′T y > 0

We can scale y to ensure that the last co-ordinate of y (ym+1) is either +1,−1 or 0. Let y′ denotes y
except the last co-ordinate (which can be 1,−1 or 0).

Suppose ym+1 = −1. Then,

bT y′ > p∗ + ε and AT y′ ≤ c
⇒ bT y′ > p∗ and (x∗)TAT y′ ≤ cTx∗ = p∗

⇒ bT y′ > p∗ and (bT )y′ = p∗

But this is a contradiction since Ax∗ = b.

Exercise 15. Show that ym+1 is not equal to zero.
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So we can assume ym+1 = 1. Putting back the definition of A′, b′,

∃y′ : AT y′ + c ≤ 0 and bT y′ + p∗ + ε > 0

Replacing y′ by −y′,

∃y′ : AT y′ ≥ c and bT y′ < p∗ + ε

So, we can have a feasible dual solution with objective value less than p∗ + ε. That means, the dual
optimal value is less than p∗+ ε for every ε > 0. Hence, the dual optimal value is p∗ (remember that it can’t
be less than p∗).

Note 6. There can be cases when both primal and dual are infeasible.

p*

   dual 
solution

Fig. 4. Strong duality through picture

5 Assignment

Exercise 16. Show that the closest point to a convex set is unique (from Lemma 1).

Exercise 17. Modify the proof of Thm. 1 to show the Thm. 2 directly.

Exercise 18. Prove Cor. 1.

Exercise 19. Show that the dual of the dual is the primal program (for the standard linear program).

Hint: First convert the dual into primal form and then take the dual.
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