
Lecture 3: Linear Programming

Rajat Mittal

IIT Kanpur

We will foucs on the definition and concept of optimization. This lecture will introduce you to the field
of linear programming with some examples.

1 Mathematical optimization

Optimization is a process of maximizing or minimizing a quantity under given constraints. Most of the prob-
lems in this world are optimization. You have to maximize (happiness/peace/money) or minimize (poverty,
grief, wars etc.). Unfortunately, we are not solving any of those problems.

On a smaller scale, there are many real world problems where we need to optimize mathematical quantities
and the constraints can also be represented as mathematical functions. For example, optimizing time in the
production cycle of an industry, optimizing tax in a tax-return, optimizing length in a tour are mathematical
optimization problems we encounter in our daily life.

Formally, any problem of the form:

min f0(x)

s.t. fi(x) ≤ bi i = 1, 2, · · · ,m

is called a mathematical optimization problem. Here f0 is the objective/optimization function and fi ≤ bi
are called constraints. The task here is to find the max/min value of f0(x), s.t., x satisfies all the constraints.

An x satisfying all the constraints is called a feasible solution. The set of x’s satisfying all the constraints
is called the feasible region.

Sf = {x : fi(x) ≤ bi ∀ i ∈ [m]}

A feasible solution x∗ is called an optimal solution if it has the smallest objective value among all the
feasible solutions. So, for any feasible z ∈ Sf , we know that f0(z) ≥ f0(x∗). Let’s consider some examples,

– take our/mine favorite example of world peace: x-actions, f0- peace function, fi’s - there are many (for
example, don’t kill everyone/anyone),

– satisfiability: given a boolean satisfiability formula, (x1 ∨ x2 ∨ x4), (x̄2 ∨ x4 ∨ x1), · · · ,

max # of clauses satisfied

s.t. x ∈ {0, 1}n

– portfolio optimization: Every variable represents amount spend in each asset. Constraints might be on
budget/availability/expected return. Objective is to minimize risk,

– data fitting: find some model from some class of models which fit the data. What are the constraints,
objective function, variables?

Note 1. Remember that optimal solution need not be unique. One special case is: when variables have
symmetry, in this case some kind of permutation can be applied to get multiple optimal solutions.

1.1 Classes of optimization problems

It is quite clear from the previous discussion that general optimization problems seem to be really hard.
Hence, we are interested in classes of optimization problems which can be solved easily or have specific
properties. These different classes differ in the kind of constraints and objective functions that are allowed to

be included in these problems. One example is Linear programming, where constraints and objective function
have to be linear.

A natural question might be, What kind of classes should be studied? A class of problems is interesting
if:

– Many real world problems can be modeled as a problem in that class.
– Problems in the class are easily/efficiently solved.
– Problems in the class have nice properties (e.g., duality), which can give us more information about the

structure, solution of the problem (this will become clear later).

Linear programming satisfies all the above properties and hence a natural candidate to be studied. Our
emphasis will be to understand why linear programming can be solved efficiently and see some applications
of them in the field of theoretical computer science. Linear programming solvers (like simplex, interior point
method) will not be covered in this course.

Convex optimization is a generalization of linear programming where the constraints and objective func-
tion are convex. It is interesting because most of the algorithms for linear programming can be generalized
to convex optimization too. More importantly, many more problems can be expressed in this framework
than linear programming. Many subclasses of convex optimization like semidefinite programming and least
square problem are also widely used and have important applications in various fields. Later, we will study
semidefinite programming in detail.

I would like to emphasize that very simple additional constraints can make the these problems hard. One
of those constraints which is notorousily difficult is, when the variables are restricted to be integers. These
are called integer programming problems.

Exercise 1. Show that the minimum weight vertex cover problem can be formulated as an LP with additional
constraint that variables belong to {0, 1}.

2 Linear Programming

Linear programming is one of the well studied classes of optimization problem. We already discussed that
a linear program is one which has linear objective and constraint functions. A linear constraint is a linear
expression with equalities or inequalities.

Exercise 2. What is a linear expression?

This implies that a linear program looks like

min
∑
i

cixi

subject to aTi xi ≤ bi ∀i ∈ {1, · · · ,m1}
aTi xi ≥ bi ∀i ∈ {m1 + 1, · · · ,m2}
aTi xi = bi ∀i ∈ {m2 + 1, · · · ,m}

Here the vectors c, a1, · · · , am ∈ Rn and scalars bi ∈ R are the problem parameters. Notice that
∑

i cixi
can also be written as cTx in vector notation.

Let us take an example. In the max flow problem, we are given a graph, start(s) and end node (t),
capacities on every edge. We need to find out the maximum flow possible through edges.

The linear program looks like:

max
∑
{s,u} f(s, u)

s.t.
∑
{u,v} f(u, v) =

∑
{v,u} f(v, u) ∀v 6= s, t

0 ≤ f(u, v) ≤ c(u, v)

Note 2. There exist another linear program for the same problem, which can be made using the flow through
paths.

2

s

t

Fig. 1. Max flow problem: there will be capacities for every edge in the problem statement

2.1 Solving linear programs

You might have already had a course on linear optimization. So you might know that there are many known
algorithms for solving linear programs: like simplex, ellipsoid and interior point method. Simplex method
was one of the first methods to solve these programs. But almost all initial versions have examples which
will take too long (exponential time) to solve. It is an open question if some version of simplex can run in
polynomial time for all the instances. Since it is efficient in practice, it is used in many places.

The first polynomial time algorithm was Ellipsoid algorithm. It is not found to be very efficient in practice.
Few years later, interior point method was developed and shown to be in polynomial time. Since it is efficient
in practice and is provably fast, it is implemented in a lot of places.

Because of the abundance of algorithms to solve linear programs, researchers were really excited about
this paradigm. There were many attempts to solve even NP hard problems (like traveling salesman problem)
using linear programming. Notice that this will prove one of the most fundamental questions of complexity
theory, P=NP. This is because we know that linear programs can be solved in polynomial time.

Recently there was a big result by Wolf et. al., where they showed that most of these techniques are
bound to fail. They showed that the traveling salesman polytope or its extension will require exponential
number of constraints.

2.2 Another example of a linear program

Suppose we have a company which makes two kinds of laptop, Apple and Dell. Every Apple gives a profit
of 10 Rs. and every Dell 5 Rs.. It is clear that to maximize the profit the company should make as many
Apple computers as possible (assuming they can sell everything they build).

Though, life is not so simple, every Apple computer takes 20 people to build, on the contrary Dell just
takes 13. Similarly, an Apple needs 4 chips, but the Dell needs only 1. At any particular day, the company
has at most 95 people and 28 chips for their disposal. How many Apple’s and Dell’s should the company
make? This problem is known as resource allocation problem.

From the mathematical point of view, the problem is quite clear,

max 10x1 + 5x2

s.t. 20x1 + 13x2 ≤ 95

4x1 + x2 ≤ 28

x1, x2 ≥ 0.

3

Here, x1 is the number of Apple’s and x2 is the number of Dell’s. In a real scenario, we want these to be
integers. Let’s not worry about this constraint yet, though we have seen that these constraints (that variables
should be integer) make certain problems really hard.

In any case, the above optimization approach can be generalized to the following resource allocation
problem.

Suppose, a manufacturing unit wants to produce items i = 1, · · · , n using raw materials j = 1, · · ·m. The
cost of raw material j is γj and the price of item i is ρi. There is only bj amount of raw material j available.
If a single unit of item i requires aij amount of raw material j, the manager’s job is,

max
∑

i(ρi −
∑

j aijγj)xj

s.t. ∀ j
∑

i aijxi ≤ bj
∀ i xi ≥ 0.

Notice that ρi −
∑

j aijγj can be thought of as the profit for item i, we call it ci. Suppose c is the vector
with co-ordinates ci, x with co-ordinates xi and so on, then

max cTx

s.t. ∀ j aTj x ≤ bj
x ≥ 0.

Let us look at the same resource allocation problem from a pessimist’s point of view. Suppose, he wants
to assign some cost yj to every raw material so that the cost of his inventory is minimized (for budget
purposes). Though the catch is, he should be willing to sell the raw material at the same price to some other
competitor manufacturing unit.

These constraint imply, his assigned cost should not be smaller than the market price, yj ≥ γj (else the
competitors can directly buy from him instead of market) and also

∀ i
∑
j

aijyj ≥ ρi

Otherwise, the competitor can buy the raw material from our unit and make the items cheaper than the
market price. Hence, the problem becomes,

min
∑

j bjyj

s.t. ∀ i
∑

j aijyj ≥ ρi
∀ j yj ≥ γj .

If we make a change of variable here zj = yj − γj , the life will be much simpler,

min
∑

j bjzj

s.t. ∀ i
∑

j aijzj ≥ ci (1)

∀ j zj ≥ 0.

You can see that both problems look similar. Definitely both have linear objective and constraint func-
tions. Let’s make this precise.

4

3 Standard format

A linear program is an optimization problem where both the constraints as well as objective function is linear
in the variables to be optimized. Through this definition there can be inequalities, equalities or different signs
on the variables.

To make the future analysis and description simple, we assume a standard form. All other kind of linear
programs can be converted into this standard form. The standard form of a linear program is,

max cTx

s.t. Ax = b

x ≥ 0.

Where c, x ∈ Rn, b ∈ Rm and A is an m × n matrix. The constraint Ax = b should be interpreted as,
every entry of Ax is equal to the corresponding entry of b. It is almost clear that the resource allocation
problem is a linear program (an LP) in standard form.

Exercise 3. Show that the optimization problem 1 can be converted into an LP in standard form. What are
c, b, A now?

3.1 Converting one LP into another

We have been talking informally about we can convert any LP into standard form. Intuitively it means that
both the LP’s are equivalent. What does it mean mathematically? Suppose we are given two LP’s L1 and
L2, when are they equivalent?

Two LP’s (L1 and L2) are equivalent iff

– Any optimal solution of L1 can be converted into a feasible solution of L2 with same objective value.
– Any optimal solution of L2 can be converted into a feasible solution of L1 with same objective value.

Note 3. The solutions for two LP’s having the same value can be defined in various ways, e.g., one could be
a simple monotone function of another.

For an example, suppose for input we have x ∈ {0, 1}n and there are sets C1, C2, · · · , Cm ⊆ {0, 1}n.
Consider the LP,

max
∑

x ux + vx

s.t. ∀ i ∈ [m]
∑

x∈Ci
ux − vx ≤ |Ci|

∀ x : ux, vx ∈ R.

Observe that by change of variable yx = ux + vx and zx = ux − vx, the LP becomes

max
∑

x yx

s.t. ∀ i ∈ [m]
∑

x∈Ci
zx ≤ |Ci|

∀ x : yx, zx ∈ R.

Now it is clear that value of zx doesn’t matter (we can set it to zero) and yx can be raised as high as
possible.

Exercise 4. Show that above two LP’s are equivalent. What if in the first LP, we had constraint ux, vx ≥ 0
for all x?

5

3.2 Other formats

Let’s talk about how to convert different kind of linear constraints into the standard form.

– inequality into equality: Use extra non-negative variables.
– Inequality in the opposite direction: A constraint like dTx ≥ e can be converted to (−dT)x ≤ (−e).

Exercise 5. What if input variable is less than zero?

– No constraint on input variable: If xi is unconstrained, then xi = yi − zi, where yi, zi ≥ 0.

Exercise 6. Show that the two LP’s in this case would be equivalent in the sense described above.

– Strict inequalities: Not allowed in LP’s. Instead we solve the approximate version with inequalities.
– We don’t need to consider sup/inf and can only work with max/min. This can be justified using Fourier-

Motzkin elimination.

4 Assignment

Exercise 7. What is the least square optimization problem? Read about it.

Exercise 8. How will you convert an equality constraint into the standard format?

Exercise 9. Show that every linear program can be converted into this kind of standard form.

max cTx

s.t. Ax ≤ b
x ≥ 0.

Exercise 10. Look at the investment problem given at,
https://www.utdallas.edu/ scniu/OPRE-6201/documents/LP02-Investment.pdf.
Try to formulate its LP before looking at the solution.

Exercise 11. Consider a two player game with a matrix M (of dimension n× n). The two players, call them
row player and column player, have n strategies each. Row player gets an output Mij when she plays strategy
i and column player strategy j. We want to find probabilities p1, p2, · · · , pn for row player which optimizes
her output.

Show that this problem can be formulated as a linear program.

References

1. G. Strang. Linear Algebra and Its Applications. Cengage learning, 2007.
2. S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge, 2004.
3. D. Spielman. Course notes: Spectral Graph Theory. http://www.cs.yale.edu/homes/spielman/561/, 2015.
4. L. Trevisan. Course notes: Graph Partitioning, Expanders and Spectral Methods.

https://people.eecs.berkeley.edu/ luca/expanders2016/index.html.

6

	Lecture 3: Linear Programming

