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We will start with the basics of linear algebra that will be needed throughout this course. That means,
we will learn about vector spaces, linear independence, matrices and rank in this lecture. The basics of
eigenvalue, eigenvectors and spectral decomposition will be covered later. For the rest of this course, I will
explain the basics before the application starts as opposed to giving all the basics in the beginning.

This approach is better because you will see the motivation of discussed concepts almost immediately.
On the other hand, we might miss out on a few concepts in the initial applications. It is your responsibility
to clarify any term or concept which has not been covered.

This material is mostly taken from Gilbert Strang’s book ”Linear algebra and its applications”. For a
detailed introduction to these concepts, please refer to Strang’s book or any other elementary book on linear
algebra.

Note 1. For simplicity of notation, I will use capital letters for matrices and small letters for vectors.

1 System of linear equations

I believe that most of the areas in mathematics owe their existence to a problem. In the case of linear algebra,
one of the central problem is to solve equation Ax = b. If the matrix A is m× n then this equation can also
be viewed as m linear equations in n variables.

Exercise 1. What are the dimensions of b and x if we assume them to be vectors?

Let us look at a very simple example,

2x + y = 4
x + y = 3

You can deduce that the solution is x = 1, y = 2. What about,

2x + 2y = 5
x + y = 3

You can again prove that these set of equations does not have a solution. So, before solving Ax = b, the
first question we should ask is,

When does Ax = b have a solution?

We will develop a theory for this question. You might wonder, why develop a theory when you can answer
it just by inspection. The reason is, we want to answer this question when we have thousands of variable
and equations. The algorithmic answer to these questions is used widely in many industries today.

The theory originates by looking at those two equations in a different manner. Instead of looking at the
set of equations as two rows (linear equations), we will view them as column vectors and their combinations.

x

[
2
1

]
+ y

[
1
1

]
=

[
4
3

]
The system of linear equations question can be framed differently now. Does there exist a combination

of two vectors,

[
2
1

]
and

[
1
1

]
, which equals

[
4
3

]
?



1.1 Vector spaces

A vector space is a set of elements closed under addition and scalar multiplication (all linear combinations).
In other words, V is a vector space iff

∀ x, y ∈ V, α, β ∈ R : αx+ βy ∈ V.
In particular, it implies that for x, y ∈ V , x+ y and αx are members of the vector space.

Note 2. We have defined the scalars (α, β) to be from real numbers. But the vector space can be defined
over any field by taking the scalars from that field.

There is a more formal definition with axioms about the binary operations and identity element. But the
definition above will provide enough intuition for us. The most common examples for a vector space are Rn,
Cn, the space of all m× n matrices and the space of all functions. We will mostly be concerned with finite
vector spaces over real number, Rn, in this course.

A subspace is a subset of a vector space which is also a vector space and hence closed under addition and
scalar multiplication. A span of a set of vectors S is the set of all possible linear combinations of vectors in
S. It forms a subspace.

Exercise 2. Give some examples of subspace of Rn. Prove that a span is a subspace.

Note 3. We will be interested in vector space Rn, but the following concepts are valid for general vector
spaces.

1.2 Linear independence

To understand the structure of a vector space, we need to understand how can all the elements of a vector
space be generated. Using the definition of the vector space, the concept of linear dependence/independence
comes out.

Given a set of vectors v1, · · · , vn ∈ V , they are linearly dependent, if vector 0 can be expressed as a linear
combination of these vectors.

α1v1 + · · ·+ αnvn = 0, ∃i : αi 6= 0.

This implies that at least some vector in the set can be represented as the linear combination of other
elements. On the other hand, the set is called linearly independent iff

α1v1 + · · ·+ αnvn = 0⇒ ∀i, αi = 0

Intuitively, if we need to find generators of a vector space, a linearly dependent set is redundant. But
a linearly independent set might not be able to generate all the elements of a vector space through linear
combinations. This motivates the definition of basis, which is, in essence, a maximal linearly independent
set of a vector space.

Definition 1. Basis: A set S is called a basis of a vector space V iff S is linearly independent and any
vector in V can be represented as a linear combination of elements in S.

Since any element in V can be represented as a linear combination of elements of S. This implies that
adding any v ∈ V \ S in S will make it linearly dependent (hence a basis is maximal linearly independent
set).

One of the basic theorems of linear algebra says that the cardinality of all the basis sets is always the
same and it is called the dimension of the vector space. Also given a linearly independent set of V , it can
be extended to form a complete basis of V (hint: keep adding linearly independent vectors till a basis is
obtained).

There is no mention about the uniqueness of the basis. There can be lot of basis sets for a given vector
space.

The span of k < n elements of a basis B1 of V (dimension n) need not be contained in the span of some
k′ (even n− 1) elements of B2. Consider the standard basis B = {e1, · · · , en} and vector x = (1, 1, · · · , 1)T .
Now x or the space spanned by x is not contained in span of any n− 1 vectors from B.
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1.3 Inner product space

All the examples we discussed above are not just vector spaces but inner product spaces. That means they
have an associated inner product. Again we won’t go into the formal definition. Intuitively, inner product (dot
product for Rn) allows us to introduce the concept of angles, lengths and orthogonality between elements of
vector space. We will use xT y to denote the inner product between x and y.

Definition 2. Orthogonality: Two elements x, y of vector space V are called orthogonal iff xT y = 0.

Definition 3. Length: The length of a vector x ∈ V is defined to be ‖x‖ =
√
xTx.

Using orthogonality we can come up with a simpler representation of a vector space. This requires the
definition of orthonormal basis.

Definition 4. A basis B of vector space V is orthonormal iff,

– For any two elements x, y ∈ B, xT y = 0,

– For all elements x ∈ B, ‖x‖ = 1.

In this orthonormal basis, every vector can be represented as a usual column vector (n × 1 matrix)
with respect to this orthonormal basis. It will have co-ordinates corresponding to every basis vector and
operation between vectors like summation, scalar multiplication and inner product will make sense as the
usual operation on the column vectors.

Given any basis of a vector space, it can be converted into an orthonormal basis. Start with a vector of
the basis and normalize it (make it length 1). Take another vector, subtract the components in the direction
of already chosen vectors. Normalize the remaining vector and keep repeating this process. This process
always results in an orthonormal basis and is known as Gram-Schmidt Process.

2 Linear operators

Given two vector spaces, V and W over R, a linear operator M : V →W is defined as an operator satisfying
the following properties.

– M(x+ y) = M(x) +M(y).

– M(αx) = αM(x), ∀α ∈ R.

These conditions imply that the zero of the vector space V is mapped to the zero of the vector space W .
Also,

M(α1x1 + · · ·+ αkxk) = α1M(x1) + · · ·+ αkM(xk)

Where x1, · · · , xk are elements of V and αi’s are in R. Because of this linearity, it is enough to specify the
value of a linear operator on any basis of the vector space V . In other words, a linear operator is uniquely
defined by the values it takes on any particular basis of V .

Let us define the addition of two linear operators as (M +N)(u) = M(u) +N(u). Similarly, αM (scalar
multiplication) is defined to be the operator (αM)(u) = αM(u). The space of all linear operators from V to
W (denoted L(V,W )) is a vector space in itself. The space of linear operators from V to V will be denoted
by L(V ).

Exercise 3. Given the dimension of V and W , what is the dimension of the vector spaces L(V,W )?
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2.1 Matrices as linear operators

Given two vector spaces V = Rn,W = Rm and a matrix M of dimension m × n, the operation x ∈ V →
Mx ∈W is a linear operation. So, a matrix acts as a linear operator on the corresponding vector space.

To ask the converse, can any linear operator be specified by a matrix?
Let f be a linear operator from a vector space V (dimension n) to a vector space W (dimension m).

Suppose {e1, e2, · · · , en} is a basis for the vector space V . Denote the images of this basis under f as
{w1 = f(e1), w2 = f(e2) · · · , wn = f(en)}.

Exercise 4. What is the lower-bound/ upper-bound on the dimension of the vector space spanned by
{w1, w2, · · · , wn}?

Define Mf to be the matrix with columns w1, w2, · · · , wn. Notice that Mf is a matrix of dimension m×n.
It is a simple exercise to verify that the action of the matrix Mf on a vector v ∈ V is just Mfv. Here we
assume that v is expressed in the chosen basis {e1, e2, · · · , en}.

Exercise 5. Convince yourself that Mv is a linear combination of columns of M .

The easiest way that Mf acts similar to f is: notice that the matrix Mf and the operator f act exactly the
same on the basis elements of V . Since both the operations are linear, they are exactly the same operation.
This proves that any linear operation can be specified by a matrix.

The previous discussion does not depend upon the chosen basis. We can pick our favorite basis, and the
linear operator can similarly be written in the new basis as a matrix (The columns of this matrix are images
of the basis elements). In other words, given bases of V and W and a linear operator f , it has a unique
matrix representation.

To compute the action of a linear operator, express v ∈ V in the preferred basis and multiply it with
the matrix representation. The output will be in the chosen basis of W . We will use the two terms, linear
operator and matrix, interchangeably in future (the bases will be clear from the context).

For a matrix A, AT denotes the transpose of the matrix.
Let us look at some simple matrices which will be used later.

– Zero matrix: The matrix with all the entries 0. It acts trivially on every element and takes them to the
0 vector.

– Identity matrix: The matrix with 1’s on the diagonal and 0 otherwise. It takes v ∈ V to v itself.
– All 1’s matrix (J): All the entries of this matrix are 1.

Exercise 6. What is the action of matrix J?

2.2 Kernel, image and rank

For a linear operator/matrix (from V to W ), the kernel is defined to be the set of vectors which map to 0.

ker(M) = {x ∈ V : Mx = 0}

Here 0 is a vector in space W .

Exercise 7. What is the kernel of the matrix J?

The image is the set of vectors which can be obtained through the action of the matrix on some element
of the vector space V .

img(M) = {x ∈W : ∃y ∈ V, x = My}

Exercise 8. Show that img(M) and ker(M) are subspaces.

Exercise 9. What is the image of J?
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Notice that ker(M) is a subset of V , but img(M) is a subset of W . The dimension of img(M) is known
as the rank of M (rank(M)). The dimension of ker(M) is known as the nullity of M (nullity(M)). For a
matrix M ∈ L(V,W ), by the famous rank-nullity theorem,

rank(M) + nullity(M) = dim(V ).

Here dim(V ) is the dimension of the vector space V .

Proof. Suppose u1, · · · , uk is the basis for ker(M). We can extend it to the basis of V , u1, · · · , uk, vk+1, · · · , vn.
We need to prove that the dimension of img(M) is n − k. It can be proved by showing that the set
{Mvk+1, · · · ,Mvn} forms a basis of img(M).

Exercise 10. Prove that any vector in the image ofM can be expressed as linear combination ofMvk+1, · · · ,Mvn.
Also any linear combination of Mvk+1, · · · ,Mvn can’t be zero vector.

Given a vector v and a matrix M , it is easy to see that the vector Mv is a linear combination of columns
of M . To be more precise, Mv =

∑
iMivi where Mi is the ith column of M and vi is the ith co-ordinate of

v. This implies that any element in the image of M is a linear combination of its columns.

Exercise 11. Prove the rank of a matrix is equal to the dimension of the vector space spanned by its columns
(column-space).

The dimension of the column space is sometimes referred to as the column-rank. We can similarly define
the row-rank, the dimension of the space spanned by the rows of the matrix. Luckily, row-rank turns out to
be equal to column-rank and we will call both of them as the rank of the matrix. This can be proved easily
using Gaussian elimination. We will give a visual proof of the theorem.

Proof. Given an m×n matrix M , say {c1, c2, · · · , ck} span the column space of M . Suppose, C be the m×k
matrix with columns {c1, c2, · · · , ck}. Then, there exist an k×n matrix R, s.t., CR = M . If {d1, d2, · · · , dk}
are the columns of R, then the equation CR = M can be viewed as,

...
...

...
...

...
c1 c2 · · ck
...

...
...

...
...




...
...

...
...

...
d1 d2 · · dn
...

...
...

...
...

 =


...

...
...

...
...

Cd1 Cd2 · · Cdn
...

...
...

...
...


Another way to view the same equation is,

C


· · · r1 · · ·
· · · r2 · · ·
· · · · · · ·
· · · · · · ·
· · · rk · · ·

 =


· · ·

∑
i C1iri · · ·

· · ·
∑

i C2iri · · ·
· · · · · · ·
· · · · · · ·
· · ·

∑
i Ckiri · · ·


This shows that the k columns of R span the row-space of M . Hence, column-rank is smaller than the

row-rank.

Exercise 12. Show that row-rank is less than column-rank by a similar argument.

Note 4. The column-rank is equal to row-rank. It does not mean that the row-space is same as the column-
space.

Using these characterizations of rank, it can be proved easily that rank(A) = rank(AT ) and rank(A +
B) ≤ rank(A) + rank(B).
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2.3 Ax = b

To conclude, we will again look at the original question about the existence of solutions for a system of linear
equations. Given Ax = b, there are two cases, depending upon the rank of A.

– Non-singular: If A is full rank (the columns are linearly independent) then there is a unique solution.
– Singular: If A’s rank is not full (the columns are linearly dependent) then there could be no solution or

infinite solutions.

To test whether the columns are linearly dependent or not (and solve the linear equations), the established
method in practice is Gaussian elimination. I assume that you know what Gaussian elimination is, if not,
please read about it.

Given an n × n matrix, Gaussian elimination works in time O(n3). There are better algorithms known,
but Gaussian elimination will be enough for our purposes.

3 Assignment

Exercise 13. When A is singular, under what conditions will we have no solution for the system Ax = b?

Exercise 14. Prove that rank(AB) ≤ rank(A).

Exercise 15. Read about Gaussian elimination.

Exercise 16. Prove that rank(A) = rank(A∗A).

Hint: rank(A) ≥ rank(A∗A) is easy. For the other direction, reduce A to its reduced row echelon form.

Exercise 17. Show that vTAw =
∑

ij Aijviwj , where A is a matrix and v, w are vectors.

Exercise 18. Prove that Trace(AB) = Trace(BA).

Exercise 19. Show that trace(A(vT v)) = vTAv, where A is a matrix and v is a vector.
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