
Lecture 16: Solving Linear Equations for Sparse Graphs ?

Rajat Mittal

IIT Kanpur

We introduced linear algebra by asking a question, how to solve

Ax = b.

Our last application of spectral methods will be to solve such equations fast when A is a Laplacian
matrix (we will call it L). Remember that Gaussian elimination is the standard way to solve such equations.
Though, it is expensive when matrix L is sparse.

For most of the lecture, we will talk about iterative methods to solve such equations. These methods give
approximate solutions, such that, error decreases as you increase the number of iterations (something like
Newton iteration).

In the end, we will see that sparse graph approximations help us solve Lx = b really fast. We will also see
a sparsification technique. The iterative methods mentioned below will work for positive semidefinite/definite
matrices. So, assume that we are given a positive semidefinite matrix A and we are interested in solving
Ax = b.

For most of these iterative algorithms, the number of iterations depend on a quantity called condition
number of the matrix A. Condition number, κ(A), of a positive definite matrix A is defined to be λn

λ1
, where

λ1 is the least eigenvalue and λn is the largest eigenvalue for A.

Note 1. Don’t worry about the positive semidefinite case yet. We can restrict our attention to the support
of the matrix and consider it as positive definite.

The first iterative method we will look at is called Richardson’s iteration.

1 Richardson’s iteration

1.1 Idea behind Richardson’s iteration

Let us first look at the intuition behind Richardson’s iteration. This subsection is written in an informal
manner. More formal approach will be presented in the next subsection.

We know the power series expansion of (1− x)−1,

1

1− x
= 1 + x+ x2 · · ·

Solving Ax = b for many b’s is similar to the problem of computing A−1. So, if the power series converges,

A−1 = (I − (I −A))−1 = I + (I −A) + (I −A)2 · · ·

When should we expect this power series to converge? If we can show that the norm of (I − A)n tends
to 0 as n tends to infinity, it will hint that the power series converges.

Exercise 1. Can you think of a sequence s(n) tending to 0, such that,
∑n
i=1 s(n) does not converge?

Remember, from our analysis of random walk, that if the eigenvalues of (I −A) have absolute value less
than 1 then the spectral norm of (I − A)n tends to zero. That is same as saying that the eigenvalues of A
lie between 0 and 2.

This is definitely not true for a general positive definite matrix.

? The content of these notes is largely taken from Dan Spielman’s course notes

Exercise 2. What can be done to have the eigenvalues of A lie between 0 and 2?

One possible solution might be to scale the matrix A. It is already positive definite; there should exist α,
for which, eigenvalues of αA will lie between 0 and 2.

Scaling A means, we want to solve the equation,

αAx = αb.

Richardson’s method is to choose an α intelligently and then find better and better approximation of
(I − (I − αA))−1αb. In the t-th iteration, Richardson’s method will output,

xt = (

t∑
i=0

(I − αA)i)αb.

It is called an iterative method, because of the easy recurrence,

xt = (I − αA)xt−1 + αb.

Exercise 3. What will be x0?

Every iteration needs one multiplication by A and some additions between vectors.
We still haven’t answered one question, how to choose α? Taking intuition from the analysis of random

walks, we would like to choose α, such that, the norm of I − αA is minimized.

Exercise 4. What are the eigenvalues of I − αA in terms of A?

If λ1 ≤ λ2 · · · ≤ λn were the eigenvalues of A, then (1 − αλ1) ≥ (1 − αλ2) · · · ≥ (1 − αλn) are the
eigenvalues of I − αA.

The norm will be minimized when the extreme eigenvalues have same absolute value, i.e.,

1− αλ1 = −(1− αλn).

So, the best α is 2
λ1+λn

.
Let us look at the error as number of iterations increase in Richardson’s iteration.

1.2 Analysis of Richardson’s iteration

Let x be a solution of Ax = b. Then,
x = (I − αA)x+ αb.

We would like to bound the distance ‖x− xt‖ as t increases. Here, xt is the solution after t iteration of
Richardson’s method. Then,

x− xt = (I − αA)(x− xt−1).

This implies,
x− xt = (I − αA)t(x− x0) = (I − αA)t+1x.

This equation is very similar to the one obtained in the analysis of random walk. Since, the eigenvalues
of I − αA are small, this error should tend to zero.

Assuming α is 2
λ1+λn

, we know that the biggest eigenvalue of I − αA is 1− 2λ1

λ1+λn
. So,

‖x− xt‖
‖x‖

≤
∥∥(I − αA)t+1

∥∥ =

(
1− 2λ1

λ1 + λn

)t+1

.

Exercise 5. Show that we need to have O(λ1+λn

2λ1
) iterations to bound the error by a constant.

To conclude, we can say that we need to run Richardson’s method for around O(κ) iterations. Remember
that κ = λn/λ1 is the condition number of matrix A.

Can we reduce the number of iterations? Next, we will see that we can find an approximation of inverse
of A faster (less number of iterations) by using Chebyshev’s polynomials.

2

2 Approximation of inverse using Chebyshev polynomials

In the previous section for Richardson’s method, we saw that finding a series of approximate inverses of A
was helpful in solving Ax = b. Let us try to formally define what we mean by this series of approximate
inverses in this case.

In last section, we approximated A−1 by the sequence {
∑t
i=0(I −A)t}t. Let us call the polynomial in A

which we use as inverse in the t-th iteration to be pt(A).
Let us look at all the conditions we need for pt(A).

– We want pt(A) to be a polynomial because we should be able to compute it efficiently.
– We should be able to compute pt(A) from pt−1(A) quickly.
– Last but not the least, pt(A)A should be close to identity, i.e.,∥∥pt(A)A− I

∥∥ ≤ εt.
Here, we would like εt to reach zero quickly.

As mentioned before, we used pt(A) =
∑t
i=0(I − A)t in Richardson’s iteration and got close to the

solution in O(κ) iterations. Can we do better?
Let us look at the condition ‖Apt(A)− I‖ being small more closely. You will show in the assignment that

the eigenvalues of this matrix are λip
t(λi)− 1 for eigenvalues λi of A.

So, we need to show that |λipt(λi)− 1| is small. Define qt(x) = 1− xpt(x), where deg(qt) is t+ 1. If we
show that qt(0) = 1 and |qt(x)| ≤ εt for all x between λ1 and λn, we can find a good series of approximation
for A.

Exercise 6. Show that any polynomial q, such that q(0) = 1, can be written as 1 − xp(x) where deg(p) is
one less than the degree of q.

So, our new target is to find q, s.t., q(0) = 1 and |q(x)| is small when x is between λ1 and λn. We will
create such polynomials from existing family of polynomials called Chebyshev polynomials.

For us, it is sufficient to note that there exist polynomials (called Chebyshev polynomials) Tt(x) such
that,

– Tt+1(x) = 2xTt(x)−Tt−1(x), T0(x) = 1 and T1(x) = x. So, the degree of Tt is t and they can be computed
iteratively (because of recurrence).

– Tt(x) ∈ [−1, 1] for x ∈ [−1, 1] and increase monotonically afterwards.
– Tt(1 + x) ≥ (1 +

√
2x)t/2 for x ≥ 0.

These are the polynomials which stay in [−1, 1] when x ∈ [−1, 1] and grow rapidly afterwards. Given the
conditions on q, we would like to map λ1 to 1 and λn to −1 using a linear map.

Exercise 7. Why did we not map λ1 to −1 and λn to 1?

Solving a+ bλ1 = 1 and a+ bλn = −1, we get the linear map

f(x) :=
λn + λ1
λn − λ1

− 2

λn − λ1
x.

Since we want qt(0) = 1, define,

qt(x) :=
Tt(f(x))

Tt(f(0))
.

We now know that between λ1 and λn, |qt(x)| is less than |1/Tt(f(0))|. To establish the rate of conver-
gence, we only need to lower bound the value of Tt(f(0)).

3

We know that f(0) = λn+λ1

λn−λ1
≥ 1 + 2/κ. Using the bound on Chebyshev polynomials after 1,

Tt(f(0)) ≥ (1 + 2/
√
κ)t/2.

This implies that we will hit constant epsilon when t = O(
√
κ).

We crucially needed the fact that λ1 > 0 for Chebyshev’s method to work. We also know, λ1 = 0 for a
Laplacian. This would imply that Chebyshev polynomial method will not work for Laplacian.

Though, a small change can make the above method work. We restrict our attention to the non zero
eigenspaces of L. L is positive definite there and we can find an approximate inverse in that space.

3 Preconditioning

For this section, the error in our algorithm will be measured in A-norm,

‖x‖A =
√
xTAx,

instead of the 2-norm used in the previous section.
We want to improve the running time of our iterative algorithms. Our next idea is to find a matrix C,

s.t., we will solve CAx = Cb instead of Ax = b. In this case, it should be easier to solve linear equations in
CA as compared to linear equations in A. Matrices C’s, such that, it is easy to solve linear equations in CA
are called preconditioners.

We saw in the last section that the time required to solve linear equations Ax = b depends on the
condition number of A. If the condition number is big, we want to find faster ways to solve Ax = b. So, one
strategy might be to find a preconditioner C, s.t., the condition number of CA is small.

What does it mean that the condition number is small (close to one)? This implies that all the eigenvalues
are close to 1 under some scaling. In other words, matrix is close to identity. To formalize the strategy
mentioned above, we first need the definition of close.

3.1 Approximation

A symmetric matrix A is ε approximated by a symmetric matrix B iff

(1− ε)B � A � (1 + ε)B. (1)

Note 2. This is an extension of the notion of graph approximation studied before.
This is a pretty strong notion of approximation, because it implies that for every vector x,

(1− ε)xTBx � xTAx � (1 + ε)xTBx.

Since the quadratic form captures many properties of matrices, all those properties of A are approximated
by B. For one, if λi, µi are the i-th eigenvalue of A,B respectively, then

(1− ε)µi ≤ λi ≤ (1 + ε)µi.

You will prove this in the assignment. Next, we assume that A and B are positive definite.

Exercise 8. From approximation between A and B (Eqn. 1), prove that,

(1− ε)I � B−1/2AB−1/2 � (1 + ε)I.

The exercise implies that the eigenvalues of B−1/2AB−1/2 are very close to identity and hence the
condition number is pretty small.

4

Exercise 9. Show that B−1/2AB−1/2 is similar to B−1A.

This implies that the eigenvalues of B−1A are close to 1 and hence condition number is small. So, if B
approximates A well, then we can use B−1 as a preconditioner.

To conclude, matrix approximation gives us a strategy to solve Ax = b fast. We need to find a matrix B,
s.t.,

– B is an ε approximation of A,
– B−1 can be computed fast,
– We can find B fast.

In the following subsections, we will see, how these B’s can help us solve linear equations fast. In the
next section, we will construct approximations for a Laplacian.

3.2 Preconditioning with Richardson’s method

Let us look at one way in which such an approximation can be helpful (B−1A has eigenvalues close to 1).
To solve Ax = b, we will essentially solve B−1Ax = B−1b.

Our first guess for the solution will be x0 = B−1b. The error obtained is
∥∥x−B−1b∥∥

A
=
∥∥(I −B−1A)x

∥∥
A

,
where x is the solution. Analyzing,∥∥(I −B−1A)x

∥∥
A

=
∥∥x−B−1Ax∥∥

A

=
∥∥∥A1/2x−A1/2B−1Ax

∥∥∥
=
∥∥∥(I −A1/2B−1A1/2)A1/2x

∥∥∥
≤
∥∥∥I −A1/2B−1A1/2

∥∥∥‖x‖A
≤ ε‖x‖A.

Here, the last equality follows because the matrix I −A1/2B−1A1/2 and I −B−1A are similar.
If we want to improve the approximation, we go to the next iteration of Richardson’s method. That

means, our next attempt at solution will be,

x1 = B−1b+ (I −B−1A)x0.

Again, calculating the error,

‖x− x1‖A =
∥∥x− x0 −B−1(b−Ax0)

∥∥
A
.

Exercise 10. Show that ‖x− x1‖A is less than ε2‖x‖A.

In general, xt = B−1b+ (I −B−1A)xt−1 and you will show in the assignment that ‖x− xt‖A ≤ εt‖x‖A.

3.3 Preconditioning on Chebyshev’s method

Let λ1 ≤ λ2 ≤ · · · ≤ λn be the eigenvalues of B−1A.
From the section on Chebyshev’s method, we know that there exist polynomial q(x), s.t.,

– q(0) = 1,
– q(x) ≤ ε, when x is between λ1 and λn,

– degree of q is O(
√

λn

λ1
log(1

ε)).

5

Note 3. We ran Chebyshev method till the error became constant, it can be run till the error becomes ε.
Since q(0) = 1, set q(x) = 1 − xp(x) like before. Then, with preconditioning, the solution given by

Chebyshev’s method would be,

xc = p(B−1A)B−1b.

Let x be the vector, s.t., Ax = b. We will show that ‖x− xc‖A ≤ ε‖x‖A. Looking at the A-norm,

‖x− xc‖A =
∥∥∥A1/2(x− xc)

∥∥∥
=
∥∥∥(I −A1/2p(B−1A)B−1A1/2)A1/2x

∥∥∥
≤
∥∥∥I −A1/2p(B−1A)A−1/2A1/2B−1A1/2

∥∥∥‖x‖A
=
∥∥∥I − p(A1/2B−1A1/2)A1/2B−1A1/2

∥∥∥‖x‖A
=
∥∥∥q(A1/2B−1A1/2)

∥∥∥‖x‖A
≤ ε‖x‖A.

The last inequality follows because A1/2B−1A1/2 is similar to B−1A. The third last inequality follows
from the following exercise.

Exercise 11. Let f be a polynomial, show that,

A1/2f(CA)A−1/2 = f(A1/2CA1/2).

We will run Chebyshev’s method on B−1A for O(
√
κ(B−1A) log(1

ε)) iterations and get a solution which
is ε close to actual solution x. This might not seems like an improvement if we just look at the expression.
Though, the new κ is significantly smaller and hence the number of iterations have reduced.

4 Graph Sparsification

Suppose we want to solve LGx = b where LG is a Laplacian of a graph G. From previous section, we need a
matrix K, s.t.,

– K is an ε approximation of LG,
– K−1 can be computed fast,
– We can find H fast.

A graph H is called a sparsifier of G if it has few edges and is a good approximation of G. Since H has
few edges (close to linear), it is easy to find its inverse. Then, we can precondition LG with LH . We will later
have a small discussion on the third property, how to find H fast. Then, we can use LH to precondition LG

In this section, we will show the existence of almost linear sized sparsifiers. Remember, a graph can have
O(n2) edges in worst case.

A very simple idea to sparsify a graph is to sample O(n) edges from some probability distribution. It is
not at all clear that such a graph will be a good approximation of the original graph.

In many cases, Chernoff bounds are used to prove the effectiveness of sampling.

Theorem 1 (Chernoff bound). Given X1, X2, · · · , Xn, n independent binary random variables, define
X =

∑
iXi. Then,

Pr(X ≥ (1 + δ)E[X]) ≤ eO(−δ2E[X]).

6

Simply, Chernoff bounds states that the behavior of sum of independent random variables is close to their
expectation.

For our case, our random variables are matrices. Every edge sampled can be represented by its Laplacian
and we would like to get close to the complete Laplacian LG. Similar results (to Chernoff bounds) have been
proved in the case of matrices too and are called matrix Chernoff bounds. We will use the version by Tropp
presented in Dan Spielman’s notes.

Theorem 2 (Tropp). Suppose X1, X2, · · · , Xn, n independent positive definite matrix valued random vari-
ables with ‖Xi‖ ≤ R. Define the random variable X =

∑
iXi and say that µ1 and µn are the smallest and

largest eigenvalues of E[X]. Then,

Pr(λn(X) ≥ (1 + δ)µn) ≤ neO(−δ2µn/R),

and
Pr(λ1(X) ≤ (1− δ)µ1) ≤ neO(−δ2µn/R),

Where λn(M) (λ1(M)) is the largest (smallest) eigenvalue of M .

So, we need to find suitable probability distribution on edges, s.t., their Laplacian’s expectation is close
to LG and expected number of edges sampled are small.

Exercise 12. Why is it enough to prove that the expected number of edges sampled is small?

One such measure turns out to be effective resistance of the edges.

4.1 Effective resistance

For the rest of this lecture, we will consider weighted graphs. So, there will be a weight wi,j associated with
every edge i, j. The Laplacian for such a graph is,

LG =
∑

(i,j)∈E

wi,jLi,j .

Where Li,j is the Laplacian of an edge (i, j) discussed before. We look at the action of L only on the positive
eigenspace (where it is positive definite and has full rank). On that space, we can define its inverse L−1, s.t.,
LL−1 = I. Here, I is only over the positive eigenspace.

Intuitively, if the weight is large, we should think of this edge being strongly present, otherwise it is
weakly present. This intuition will help us in providing physical intuition to our strategy.

A weighted graph can also be considered as an electrical network, with edges having resistance ri,j =
1/wi,j . If there is more weight then edge is strongly connected and hence resistance should be low and vice
versa.

The effective resistance between an edge i, j is the voltage difference between node i and node j, when 1
unit of current is put at node i and taken out at node j. Simply put, we consider the entire network as one
big resistor and apply Ohm’s law to get the resistance between i and j.

Note 4. In this case, the current between node i and j need not be 1 unit.
It is good to have this intuition, but is not required for our sparsification strategy. We will assume,

without proof, that the effective resistance between i, j is,

Rei,j = (ei − ej)TL−1(ei − ej).

Note 5. For proof of this and other interesting properties of effective resistance, please look at Dan Spielman’s
course notes.

We are going to use effective resistance to sample edges. Intuitively, effective resistance captures the
importance of an edge in keeping the graph connected. More formally, it is known that effective resistance of
an edge is the probability that the edge is present in a random spanning tree. So, effective resistance seems
like a good measure to decide the fate of an edge.

7

4.2 Sampling using effective resistance

Define pi,j = C log (n)ε−2wi,jRei,j , where C is some constant. We will assume that pi,j is less than 1, if not,
the edge can be broken down into many parts with weight divided equally between them. The reason for
choosing this probability will be clear with the proof. At this point, notice that the probability is proportional
to the effective resistance.

The sampling procedure is pretty simple; we pick an edge i, j with probability pi,j and give it a weight
wi,j/pi,j .

Suppose we get a random matrix H. We need to show:

1. G is an ε approximation of H with high probability.
2. The expected number of edges in H are O(n log n). This will imply that the number of edges in H are
O(n log n) with high probability.

For the first part, we need to show,

(1− ε)LG � LH � (1 + ε)LG.

It is equivalent to showing,

(1− ε)I � L−1/2G LHL
−1/2
G � (1 + ε)I.

Which is same as showing that the eigenvalues of L
−1/2
G LHL

−1/2
G are between 1 − ε and 1 + ε. We will

use Thm. 2 to show this fact.
From the sampling procedure, LH is the sum of random matrices Xi,j where Xi,j is (wi,j/pi,j)Li,j with

probability pi,j and 0 otherwise. This implies, L
−1/2
G LHL

−1/2
G is the sum of random matrices X ′i,j where X ′i,j

is (wi,j/pi,j)L
−1/2
G Li,jL

−1/2
G with probability pi,j and 0 otherwise.

Let us denote an edge i, j by e for simplicity of notation. So, the expectation of L = L
−1/2
G LHL

−1/2
G is,

E[L] =
∑
e∈E

E[X ′e]

=
∑
e

L
−1/2
G E[Xe]L

−1/2
G]

= L
−1/2
G

(∑
e

pe
we
pe
Le

)
L
−1/2
G LG is fixed

= L
−1/2
G

(∑
e

weLe

)
L
−1/2
G

= I

For applying Thm. 2, we need to bound
∥∥X ′i,j∥∥.

Exercise 13. Show that Li,j = (ei − ej)(ei − ej)T .

Using the exercise, ∥∥X ′i,j∥∥ =
wi,j
pi,j

∥∥∥L−1/2G (ei − ej)(ei − ej)TL−1/2G

∥∥∥.
The quantity inside the norm is a rank one positive semidefinite matrix and hence norm is equal to trace

(you will prove this statement in the assignment). So,∥∥X ′i,j∥∥ =
wi,j
pi,j

Tr(L
−1/2
G (ei − ej)(ei − ej)TL−1/2G).

8

We can use the cyclicity of trace,

∥∥X ′i,j∥∥ =
wi,j
pi,j

Rei,j =
ε2

C log n
.

We have the expectation of the random variable and the norm of the individual random variable.

Exercise 14. Using Thm. 2, show that the eigenvalues of L
−1/2
G LHL

−1/2
G are between 1− ε and 1 + ε.

This proves that the matrix H is close to G. We only need to show that the expected number of edges
in our sampling procedure is O(n log n).

The idea for the proof has been given before. If we choose an edge i, j with probability pi,j , then the
expected number of edges is

∑
(i,j)∈E pi,j . Since effective resistance is the probability of choosing an edge

in a random spanning tree, we would expect Rei,j to sum to O(n). This will imply that pi,j will sum to
O(n log n).

Let us prove this formally. Remember that pi,j = C log (n)ε−2wi,jRei,j . Let us define C ′ = C log nε−2.
Then, ∑

(i,j)∈E

pi,j = C ′
∑

(i,j)∈E

wi,jRei,j .

We know that, Rei,j = (ei − ej)TL−1G (ei − ej). Substituting,∑
(i,j)∈E

pi,j = C ′
∑

(i,j)∈E

wi,j(ei − ej)TL−1G (ei − ej)

= C ′
∑

(i,j)∈E

Tr(wi,j(ei − ej)TL−1G (ei − ej))

= C ′
∑

(i,j)∈E

Tr((wi,j(ei − ej)(ei − ej)T)L−1G)

= C ′
∑

(i,j)∈E

Tr(LGL
−1
G).

Exercise 15. Prove that Tr(LGL
−1
G) = n− 1.

Substituting the value of C ′ back,
∑

(i,j)∈E pi,j = O(n log n). So, the expected number of edges are

O(n log n) as desired.

We learnt how to sparsify and potentially use this sparsification to solve Lx = b. Though, to calculate the
sparsification, we need effective resistance and that needs L−1. It seems we have gone into a loop. But, there
are methods to calculate the effective resistance approximately, without finding L−1G . These approximate
effective resistances are good enough to sparsify a graph.

We will not cover those techniques here. The article, “A fast solver for a class of linear systems”, by
Koutis, Miller and Peng is an excellent survey on these techniques.

5 Assignment

Exercise 16. Suppose {λi}ni=1 are eigenvalues of A. Show that {λip(λi)−1}ni=1 are eigenvalues of Ap(A)− I.

Exercise 17. Read about Chebyshev polynomials, their recurrence and their properties.

9

Exercise 18. Let A be ε approximated by B. Let λ1 ≤ λ2 ≤ · · · ≤ λn be eigenvalues of A and
mu1 ≤ µ2 ≤ · · · ≤ µn be eigenvalues of B. Using Courant-Fischer theorem, prove that for all i,

(1− ε)µi ≤ λi ≤ (1 + ε)µi.

Exercise 19. Let xt = B−1b + (I − B−1A)xt−1 be the t-th iteration solution of Richardson’s method with
preconditioning. Show that ‖x− xt‖A ≤ εt‖x‖A.

Exercise 20. Prove that for a rank one positive semidefinite matrix, trace is equal to its norm.

Exercise 21. Suppose, for the purpose of sparsification, we divide an edge into multiple parts with weight
divided equally between them. Show that the approximation analysis and expected number of edges does
not change.

10

	Lecture 16: Solving Linear Equations for Sparse Graphs

