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Random walks have been used in multiple areas of computer science to give randomized algorithms. In
this lecture note, we will analyze the properties of random walk using the eigenvalues and eigenvectors of
the Laplacian matrix. It will be shown that by slightly tweaking the natural random walk on a graph we can
make sure that the probability distribution converges to the first eigenvector.

Later in the lecture, we will analyze random walk on expander graphs. Using this analysis, we will show
that we can reduce the amount of randomness needed to decrease the error probability of a randomized
algorithm. Lastly, we will study some properties of expander graphs.

Before we define random walk, let us remind ourselves of the notion of a randomized algorithm.
A randomized algorithm allows the creator of the algorithm to use randomness (fair coin-tosses) at various

steps of the algorithm. Though, for every input, the answer should be correct with high probability over the
randomness of the algorithm.

High probability depends on the context, but if not mentioned we will take it to be more than 2
3 .

1 Random walks

Suppose we are given a graph with two nodes s and t. We would like to know if these two nodes are connected
or not.

A very natural approach would be to start with s and move to a neighbour of s in the next time step
randomly. We can continue exploring the graph this way for some time and hope that we will reach t soon.

Exercise 1. What should the number of time steps depend on?

A random walk on a set of nodes V (say |V | = n) is defined to be the process where we move from node
to node with pre-defined probabilities (starting state can be chosen arbitrarily). The probabilities can be
captured by an n×n matrix W , where i-th row gives the transition probabilities for moving from i to other
nodes.

The state of a random walk at time t is the collection of probabilities of being at various nodes i. In other
words, a valid state is a non-negative vector w ∈ Rn, s.t., the entries of w sum up to 1. We will call such
vectors state vectors.

We will be interested in random walks on a graph, where V will be the vertex set. At every step, we will
move from a vertex to its neighbours uniformly.

Exercise 2. Show that the walk matrix W for a d-regular graph is 1
dAG.

We will look at the case of d-regular unweighted simple graphs for simplicity. Though, notice that random
walks on graphs can have weights, self loops and multiple edges. All these can be captured by changing the
walk matrix W .

Let us call the starting state of the random walk to be w0. Let us say that after t time steps, the state
is wt.

Exercise 3. Show that wt = W tw0.

We are interested in the properties of wt. For our case, we know that W = 1
dAG, implies that all

eigenvalues of W are between 1 and −1.

? The content of these notes is largely taken from Dan Spielman’s course notes



1.1 Applying an operator repeatedly

From the discussion in the previous section, we are interested in applying an operator (W in our case)
multiple times and study its properties. For this section, let us take a general symmetric n × n matrix M
with eigenvalues between −1 and 1. Let us also assume that the eigenspace corresponding to eigenvalue 1 is
one dimensional.

Notice that a symmetric matrix can always be scaled so that its eigenvalues will lie between −1 and 1.

Exercise 4. Show that W satisfies the properties mentioned above.

Suppose M has eigenvalues µ1 = 1 ≥ µ2 · · · ≥ µn with eigenvector wi for eigenvalue µi. We will denote
the first eigenvector w1 as s (corresponding to eigenvalue 1).

We will start with an arbitrary vector u ∈ Rn. The task is to study M tu for a large natural number t.
First, we can write u in the orthonormal basis of wi’s.

u =
∑
i

αiwi.

Since wi’s are eigenvectors and M is a linear operator,

M tu =
∑
i

αiM
twi =

∑
i

αiµ
t
iwi.

Separating out the first eigenvector,

M tu = α1s+
∑

2≤i≤n

αiµ
t
iwi.

For large t, this quantity tends to α1s if |µi| < 1 for all i not equal to 1. This will happen in almost all
cases except when µn = −1.

In other words, M tu tends to α1s if µn is greater than −1. We also want to know about the rate of this
convergence.

We look at the quantity,

M tu− α1s =
∑

2≤i≤n

αiµ
t
iwi.

It is clear that the quantity on the right hand side goes to zero. The rate should depend on the absolute
values of µi’s. Since there is no constraint on u, rate of convergence will depend upon the µi with highest
absolute value. Assume that µ2 has the highest absolute value (more than µn).

Note 1. we have assumed that |µ2| ≥ |µn|, the other case can be handled similarly with µ2 replaced by |µn|.
Then, ∥∥M tu− α1s

∥∥2 =
∑

2≤i≤n

∥∥αiµtiwi∥∥2 ≤ µt2 ∑
2≤i≤n

‖αiwi‖2.

Exercise 5. Why is the first equality true?

Since ‖u‖2 =
∑
i ‖αiwi‖

2
, we can simplify our expression,∥∥M tu− α1s

∥∥2 ≤ µt2‖u‖2.
We know that µt2 will converge to zero and the rate depends upon,

µt2 = (1− (1− µ2))t ≈ e−t(1−µ2).

So, this quantity will be O(1/n) after O(log(n)/(1− µ2)) applications of M .
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1.2 Stationary distribution and convergence

Stationary distribution for an operator M is defined to be a state vector u, such that, Mu = u. Remember
that a state vector u is entry-wise non-negative and

∑
i ui = 1. Notice that u needs to be an eigenvector

with eigenvalue 1 but every eigenvector with eigenvalue 1 need not be a distribution, i.e., it need not be a
state vector.

Suppose the eigenvalues of M are in the range [1,−1) and there is an eigenvector with eigenvalue 1. We
noticed in the previous section: after repeated applications of M we will converge to this eigenvector with
eigenvalue 1. The rate of convergence depends upon 1−µ, where µ is eigenvalue with second highest absolute
value.

Let us look at the consequence of this for the random walk on a graph and different state vectors u.

Exercise 6. Will the random walk, defined by W = 1
dAG for a d-regular graph, converge?

Notice, because of Perron-Frobenius theorem, first eigenvector can be normalized to get a state vector.
Hence, we have a stationary distribution.

We know that the eigenvalues of W lie in the range [1,−1] and there is a stationary distribution. Though,
there can be an eigenvector with eigenvalue −1. This happens if and only if the graph is bipartite.

Exercise 7. Can you show that the walk W will not converge for every state vector u on a bipartite graph
with a direct argument?

The walk can be modified a bit to make it converge for every state vector. One way to do it is to make
the walk lazy. A lazy random walk is one where with probability half we stay at the same vertex move to
the neighbours with equal probability in the remaining half.

The lazy random walk operator is,

WL =
1

2
(I +

1

d
AG).

Exercise 8. What is the range of eigenvalues for the lazy walk operator WL? What is the relation between
eigenvalues of W and WL?

Let 1 = µ1 ≥ µ2 ≥ · · ·µn ≥ 0 be the eigenvalues of the lazy random walk operator. From the previous
section, lazy random walk converges to the stationary distribution. Notice that the stationary distribution
in this case is the state vector 1, the uniform distribution over all vertices. The walk converges to uniform

distribution pretty fast; after O( log(n)
1−µ2

) steps it is 1− 1/n close to the uniform distribution.

What does this mean for our s − t connectivity problem? This means that after O( log(n)
1−µ2

) steps, the

probability of reaching t is close to 1/n. So, if we run this walk n times, with constant probability we will
hit t.

1.3 Random walk on a cycle

Suppose the underlying graph is a cycle on n vertices. Let us analyze the stationary distribution and con-
vergence of random walk on this graph.

The stationary distribution is the uniform distribution. For convergence, we need to find the second
eigenvalue of 1

2 (I + 1
2Cn), where Cn is the adjacency matrix of the cycle on n vertices.

The eigenvalues of 1
2 (I + 1

2Cn) are 1/2 + 1/2λi, where λi are the eigenvalues of 1
2Cn. Let ω be the

primitive n-th root of unity. You will show in the assignment that (1, ωk, ω2k, · · · , ω(n−1)k), for all k, are the
eigenvectors of Cn.

Exercise 9. Show that the eigenvalue for eigenvector corresponding to (1, ωk, ω2k, · · · , ω(n−1)k) is ωk +
ωn−k = 2 cos(2πk/n).

So, the second eigenvalue for the lazy walk matrix is 1
2 (1 + cos(2π/n)) = cos2(π/n). Using the Taylor

series expansion of cos function, 1 − cos2(π/n) = O(1/n2). So, the random walk will converge to uniform
distribution after O(n2 log(n)) steps.
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2 Error reduction using random walk

We will look at an application of random walks in this section.
Suppose you are given a randomized algorithm which fails with probability 1

3 . We can repeat the algorithm
a few times, take majority and decrease the error probability to be less than 1

81 .

Exercise 10. Calculate and convince yourself that if you repeat the algorithm constant number of times then
the probability of failure is less than 1

81 .

Since this step will only take a constant overhead, let us assume that a standard randomized algorithm
has a failure probability of at most 1

81 .
The problem is to reduce this error probability to something very small (say 1

n or ( 1
2 )n). The most natural

way would be to use the same trick we did above. Repeat the algorithm multiple times and take majority.
This strategy works and you will show that in the assignment. Though, this takes a lot of random bits.

If we needed r random bits in every iteration and there were t iterations, we would need rt random bits.
Using random walk on graphs which expand well, we will show that we can only use r+ log(d).t random

bits to decrease the probability exponentially, where d is the degree of the graph.

2.1 Expanders

Remember that W = 1
dAG is the walk matrix for a d-regular graph. We already saw that a random walk

on the graph G reaches the stationary distribution soon if |µi| is small (for all i 6= 1). Here, µi are the
eigenvalues of AG.

A sequence of d-regular graphs (think of d as constant and increasing number of vertices) are called an
expander family if |µi| ≤ εd for all i 6= 1. This implies that the largest eigenvalue of the walk matrix is 1 and
everything else has absolute value smaller than ε.

We will not worry about constructing such graphs. There is lot of literature on expanders, but we will
only use the fact that there are constant degree expanders with ε = 1

10 . Let us say, like before, that the
algorithm uses r random bits in every iteration.

We assume an expander of constant degree, say d, with vertices indexed by {0, 1}r and ε = 1
10 . Notice

that the number of vertices are huge, but we don’t need the entire graph. Just an oracle is good if it allows
us to move from a vertex to its neighbours in polynomial time. We will assume that such an oracle exists.

Let us instead focus on how these expanders can be used to reduce the amount of random bits needed in
repeating our algorithm. We know that only 1

81 fraction of the vertices are bad, i.e., they give the incorrect
answer. Call this set of vertices F . The idea would be to take a random walk and show that we will mostly
be outside F , since the graph is an expander. In other words, we will not be trapped in the set F for a long
time (look at the figure below, Fig. 2.1).

So, to reduce the error, our strategy will be to start with a random vertex (it will take r random bits)
and then take a random walk (every step will take only log(d) random bits). If we repeat this walk t times,
we will use r+log(d).t random bits. In the next subsection, we will show that the error reduces exponentially
in t.

2.2 Analysis of the error reduction in the random walk

Before we start the analysis, let us summarize the properties of d-regular graph on which we will take the
random walk.

– The vertex set is {0, 1}r, where r is the number of random bits in the algorithm.
– The walk matrix is 1

dAG, and all the eigenvalues of W have absolute value less than 1
10 (except the first

one).
– There is a bad subset F , with at most 1

81 fraction of total vertices, where our algorithm fails.
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Fig. 1. Random walk on an expander

We want to show: if we take a random walk with t steps then the probability that at least half of the
steps are in F , is exponentially low in t.

Our first choice is truly random, so the initial probability vector p0 is 1
n1.

For a set S ⊆ {0, 1}r, let DS be a diagonal matrix. We will set the i-th diagonal entry 1 if i is in S and
zero otherwise.

Exercise 11. Show that the probability that we are in set F , given the state vector is p, is 1TDF p.

After one step of the walk, the state vector will be Wp0 and the probability that we end up in F will be
1TDFWp0.

Say, we are given a {0, 1} sequence s of length t which specifies the steps when the random walk was in
F ; if si is 1 then the random walk was in F at step i, otherwise, it was not in F . The probability that a
random walk of t steps follows the sequence s is,

Prob(random walk follows s) = 1TDtWDt−1W · · ·D2WD1Wp0.

Here, Di is DF if si = 1 and I −DF if si = 0.

Note 2. Wp0 = p0, so it does not matter if we take W at the first step or not.

Exercise 12. Convince yourself that the probability of being in sequence s is correct.

The quantity above is bounded by
∥∥1T∥∥‖DtW‖‖Dt−1W‖ · · · ‖D2W‖‖D1W‖‖p0‖. For the matrix norm,

we use the spectral norm of a matrix. It is the maximum possible norm of Mv where v is a unit vector. We
also use the result,

‖M1M2‖ ≤ ‖M1‖‖M2‖.

You will prove this in the assignment. You will also prove, for a symmetric matrix M , its norm ‖M‖ is
the highest absolute eigenvalue.

To bound the probability that random walk follows the sequence s, we need to bound the matrix norm
‖DFW‖.

Exercise 13. Why should the norm ‖DFW‖ be small?

Lemma 1.

‖DFW‖ ≤
1

9
+

1

10
≤ 2

9
.
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Proof. We want to bound the norm of DFWx, where x is a unit vector. Say, x = c1 + y where y is
perpendicular to 1. Then,

DFWx = cDFW1 +DFWy = cDF1 +DFWy.

Using triangle inequality for the norm,

DFWx ≤ c‖DF1‖+ ‖DFWy‖. (1)

Exercise 14. Show that c ≤ 1√
2r

because x is a unit vector. Hence, c‖DF1‖ ≤ 1
9 .

To bound the second term, notice that ‖DFWy‖ ≤ ‖Wy‖, since ‖DF ‖ = 1. We know that y is perpen-
dicular to 1, and all eigenvalues of W have absolute value less than 1

10 except for the eigenvector 1.

Exercise 15. Show that ‖Wy‖ ≤ 1
10 .

Using the bound on both terms of Eqn. 1, we get,

‖DFW‖ ≤
1

9
+

1

10
≤ 2

9
.

If any sequence s of random walk stays in F majority of times, then using Lem. 1,

Prob(random walk follows s) ≤
∥∥1T∥∥‖DtW‖‖Dt−1W‖ · · · ‖D2W‖‖D1W‖‖p0‖ ≤

(
2

9

)t/2
.

Here, ‖1‖ =
√

2r and ‖p0‖ = 1√
2r

.

There are at most 2t choices for s. So, the total probability that random walk is inside F in more than
half the steps of random walk,

Prob(majority of random walk in F ) ≤ 2t
(

2

9

)t/2
≤
(

8

9

)t/2
.

So, we have shown that the probability of being in F for majority of time steps is exponentially small in
t.

Hence, our algorithm will succeed with probability exponentially close to 1. Also, it will take only r +
log(d).t random bits instead of rt random bits.

3 Properties of expander graph

We will look at some properties of expander graph in this section. This properties provide the intuition
behind various applications of expander graph.

Let us remind ourselves the definition of an expander graph first. We will call a graph G = (V,E) to be
an α, d expander iff it is d-regular and

|µi| ≤ αd,

for all i 6= 1. Where µ1 ≥ µ2 · · · ≥ µn are the eigenvalues of the adjacency matrix AG.
Strictly speaking, such graphs are called spectral expanders.

Exercise 16. Read the definition of combinatorial expander.
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Spectral expansion implies combinatorial expansion by Cheeger’s inequality. Combinatorial expansion
implies spectral expansion can also be proved. In both these cases, the parameters need to be changed. We
will only worry about spectral expansion in this course.

Before we go on to describe the properties of a spectral expander, let us introduce the concept of graph
inequalities. Again, remember that we use the notation A � B iff A − B is positive semidefinite. It is
equivalent to saying that xTAx ≥ xTBx for all x.

Exercise 17. Show that it is enough to consider all unit vectors x.

We will introduce the notation G � H iff LG � LH .

Exercise 18. Let H be a sub-graph of G, show that,

G � H.

Let us take a look at an example where such kind of inequalities are proved. Let G1,n be the graph with
n vertices and just one edge, from 1 to n. Let Pn be a path on n vertices where vertex i is connected to
vertex i+ 1. These two graphs are related by the inequality,

(n− 1)Pn � G1,n.

For this inequality, we need to prove,

(n− 1)

n−1∑
i=1

(xi − xi+1)2 ≥ (x1 − xn)2.

This follows by the following observation,

(x1 − xn)2 =

(
n−1∑
i=1

xi − xi+1

)2

≤ (n− 1)

n−1∑
i=1

(xi − xi+1)2.

Where, last inequality follows from Cauchy-Schwartz.

3.1 Approximation of complete graph

A graph H is called an ε approximation of G iff

(1− ε)H � G � (1 + ε)H.

With the notion of graph approximation, we will now show that expanders are sparse approximations of

a complete graph. A complete graph on n vertices, Kn, has n(n−1)
2 edges. A d-regular expander on n vertices

has dn
2 edges.

We know that expanders exist with constant degree. The following theorem shows that a complete graph
with θ(n2) edges can be approximated by a graph with only O(n) edges.

Theorem 1. Define H to be the graph d
nKn, i.e., the Laplacian of H is the matrix d

nLKn . Let G be an α, d
expander, then

(1− α)H � G � (1 + α)H.

Proof. Let us start with the simple observation.

Exercise 19. If x = ±1, show that,
LHx = LGx = 0.
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Any vector x can be written as c11 + y where y ⊥ 1. From the previous exercise,

xTLHx = yTLHy and xTLGx = yTLGy.

This shows that we can assume x to be orthogonal to 1. So, we only need to prove, for any x ⊥ 1,

(1− α)xTLHx � xTLGx � (1 + α)xTLHx.

We know that all the eigenvalues of AG are less than αd in absolute value except the first one. Translating
this statement to Laplacian,

|d− λi| ≤ αd for all i 6= 1.

In other words, all eigenvalues λi, for i not equal to 1, lie in the range (d− αd, d+ αd).
We know that if x ⊥ 1, then it lies in the span of eigenvectors excluding the first eigenvector (1). So, for

a unit vector x,

(d− αd) ≤ xTLGx ≤ (d+ αd).

This implies,

(1− α)dxTx ≤ xTLGx ≤ (1 + α)dxTx,

since x is a unit vector.
Notice that Kn = nI − J , where J is the all 1’s matrix. So, we get that xTLHx = d

nx
TnIx = dxTx, for

all x ⊥ 1. This proves that,

(1− α)xTLHx � xTLGx � (1 + α)xTLHx.

3.2 Expanders as random graphs

Cheeger’s inequality shows that if λ2 is high then the graph has high expansion. In other words, the number
of edges between S and S̄ are high.

For a graph to be an expander, it needs to have high λ2 but also λn is not far away from d. With these
stricter conditions, we can show that the number of edges between any two sets S and T in an expander
behaves like the same quantity in a random graph.

If |S| = βn, then the probability that a random u is in S is β. If |T | = γn, then the probability that a
random ordered pair (u, v) has u ∈ S and v ∈ T is βγ.

So, we expect to have βγ(2E) edges between S and T in a random graph. Factor of 2 occurs because we
are considering ordered pairs and E is the number of total edges.

We will show that the number of edges between S and T in an expander is close to βγdn, like a random
graph. To prove this result, we will only use the fact that an expander is close to a complete graph, Thm. 1.

Theorem 2. Let H α approximate G, where G = (V,E) is a d-regular graph and H = d
nKn. If S ⊆ V has

βn vertices and T ⊆ V has γn vertices then,

|E(S, T )− βγdn| ≤ αdn
√
βγ.

Note 3. The quantity E(S, T ) counts the ordered pair of edges between S and T . In other words, if u, v are
both in S as well as T , we count edge u, v twice.

Proof. Let xS denote the indicator vector for subset S and similarly xT for T . We are interested in the
quantity xTS (LH − LG)xT . To see why, notice that

xTSLGxT =
∑
i,j

(LG)i,j(xS)i(xT )j =
∑
i

d(xS)i(xT )i −
∑

(i,j)∈EG

(xS)i(xT )j = d|S ∩ T | − E(S, T ).
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Since H = d
n (nI − J) = dI − d

nJ , we can say,

xTSLHxT = xTS (dI − d

n
J)xT = dxTSxT −

d

n

∑
i,j

(xS)i(xT )j = d|S ∩ T | − βγdn.

So, xTS (LH − LG)xT = E(S, T )− βγdn. So, we only need to prove that
∣∣xTS (LH − LG)xT

∣∣ ≤ αdn√βγ.
We will bound the left hand side using the fact that ‖LH − LG‖ is small. You will prove in the assignment

that since H approximates G, ‖LH − LG‖ ≤ αd.
The following chain of inequalities will complete the proof.∣∣xTS (LH − LG)xT

∣∣ ≤ ‖LH − LG‖‖xS‖‖xT ‖
≤ αd‖xS‖‖xT ‖

≤ αdn
√
βγ.

Here, the last inequality follows from the following exercise.

Exercise 20. Prove that |xS |2 = βn and |xT |2 = γn.

Using Thm. 2, we can show that the neighbourhood N(S) of any set S ⊆ V is big.
Let |S| = βn and |N(S)| = γn. This implies that |V −N(S)| = (1 − γ)n. Applying Thm. 2 on S and

V −N(S),

|E(S, V −N(S))− β(1− γ)dn| ≤ αdn
√
β(1− γ).

Since there are no edges between S and V −N(S),

β(1− γ)dn ≤ αdn
√
β(1− γ).

Simplifying, √
β(1− γ) ≤ α.

Squaring both sides and simplifying,

γ ≥ 1− α2

β
.

This shows that if G is an α, d expander and S is a set with size βn, then the neighbourhood of S has

size at least (1− α2

β )n.

4 Assignment

Exercise 21. Read about Markov chains and their connection with random walks.

Exercise 22. Show that the lazy walk operator for a general graph is 1
2 (I + AGD

−1
G ). Also, show that it is

similar to normalized Laplacian.

Exercise 23. Show that a lazy walk on a general graph converges using the walk operator given in the
previous question.

Exercise 24. Analyze the stationary distribution and convergence of lazy random walk on complete graph
Kn.

Exercise 25. Find the definition of circulant matrices? Show that all the eigenvectors of a circulant matrix
are (1, ωk, ωk2 , · · · , ωkn−1), for all k.
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Exercise 26. Show that the error probability decreases exponentially when we repeat a randomized algorithm
and take majority (hint: use Chernoff bound).

Exercise 27. Read about spectral norm. Show that for a symmetric matrix, it is the highest absolute eigen-
value. Prove that,

‖M1M2‖ ≤ ‖M1‖‖M2‖.

Exercise 28. Show that if H is an ε approximation of G, then

(1− ε)λk(H) � λk(G) � (1 + ε)λk(H),

for all k.

Exercise 29. Given LH is an ε approximation of LG, show that,

‖LG − LH‖ ≤ εd.

Where H = d
nKn, G is a d-regular graph and norm denotes the spectral norm.
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