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We will look at the problem of sparsest cut and an approximation algorithm (Leighton-Rao) based on
the relaxation-rounding technique.

1 Sparsest cut

We looked at the edge-expansion problem in the last lecture and gave an algorithm for a regular graph. For
a d-regular graph, remember that for a subset S of vertices V , its edge expansion is defined as,

φ(S) =
E(S, V − S)

d|S|
.

To generalize it to all graphs, the correct notion of expansion would be,

φ(S) =
E(S, V − S)

min(E(S), E(V − S))
.

Here E(S) denotes the total number of edges from subset S (which will be d|S| in the regular case). Then,
expansion for a graph is the minimum expansion for any non-empty subset S with at most half the vertices.

A related but slightly different quantity of interest is called sparsest cut. For a subset S,

θ(S) =
E(S, V − S)

|S||V − S|
.

Similar to the edge expansion case, the sparsest cut is the minimum cut over all nonempty subsets with
at most half the vertices.

θ(G) = min
S⊂V :1≤|S|≤ |V |2

θ(S).

The quantities, φ(G) and θ(G) are closely related in the case of d-regular graphs. Notice that |V − S| is
between |V | and |V |/2. You can easily prove the following exercise.

Exercise 1. Show that for a d-regular graph,

dφ(G) ≤ |V |θ(G) ≤ 2dφ(G).

So, for a d-regular graph, finding an approximation for edge-expansion or sparsest cut is similar. In these
notes, we will see how to solve sparsest cut problem for a general graph approximately. Actually, we will solve
a more general problem than the sparsest cut problem, known as the non-uniform sparsest cut problem.

1.1 Non-uniform sparsest cut

The non-uniform sparsest cut problem generalizes both, sparsest cut as well as min s − t cut problem we
looked at before.

Suppose we are given two graphs G and H instead of just one, the corresponding quantity of interest for
a subset S is,

Θ(S) =
EG(S, V − S)

EH(S, V − S)
.
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Here, EG denotes the edges in G and EH in H.
The non-uniform sparsest cut is defined as,

Θ(G) = min
S⊂V :1≤|S|≤ |V |2

Θ(S).

You can check that uniform sparsest cut corresponds to the case when H is chosen to be a clique. You
will prove in the assignment that min s− t cut problem is also a special case of non-uniform sparsest cut.

Can we find an integer program to representΘ(G)? Again, we are interested in the subset S that minimizes
Θ(S). Like before, we will keep variable xi to denote if the i-th vertex is in S. Then, for any edge (i, j),
|xi − xj | is the indicator that (i, j) is in the set E(S, v − S).

Hence,

E(S, V − S) =
∑

(i,j)∈E

|xi − xj |.

This implies that Θ(G) can be written as the integer program,

Θ(G) = min
x∈{0,1}|V |,1≤

∑
i xi≤|V |/2

∑
(i,j)∈EG

|xi − xj |∑
(i,j)∈EH

|xi − xj |
.

We already know that integer programs are hard to solve. So, we will approximate Θ(G) by relaxing the
integer program. The relaxation follows by noting that a feasible vector x for Θ(G) defines a pseudo-metric
over the vertices V .

2 Metric and Leighton-Rao relaxation

Before we look at the relaxation, we need to define metric/pseudo-metric over a set. A metric is an abstraction
of the notion of distance between points.

Given a set S, a metric d is a function d : S × S → R+ satisfying the following conditions.

1. d(x, y) ≥ 0 with equality iff x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

The last condition is called triangle inequality.

Exercise 2. Does a feasible solution x of the integer program for Θ(G) define a metric over V with function
d(xi, xj) = |xi − xj |?

You will realize that x is not a metric over V because iff in the first condition does not hold. Such functions
are called pseudo-metric. A function from S × S to R+ is a pseudo-metric if it satisfies the following.

1. d(x, y) ≥ 0 with equality if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ d(x, y) + d(y, z).

Notice the small difference in the first condition for a pseudo-metric.

Exercise 3. Prove, a feasible solution x of the integer program for Θ(G) defines a pseudo-metric over V with
function d(xi, xj) = |xi − xj |?

Leighton-Rao relaxation for Θ(G) follows by relaxing |xi − xj | to any arbitrary pseudo-metric.

LR(G) = min
d: d is a metric

∑
(i,j)∈EG

d(xi, xj)∑
(i,j)∈EH

d(xi, xj)
.
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Why is this relaxation easy to compute? It turns out that it can be written as a linear program. The
relaxation is equivalent to,

min

∑
(i,j)∈EG

d(xi, xj)∑
(i,j)∈EH

d(xi, xj)

s.t. d(xi, xj) ≤ d(xi, xk) + d(xk, xj) ∀i, j, k ∈ V
d(xi, xj) ≥ 0.

It is almost a linear program except the objective function. That can be taken care of by noting that
scaling d does not change our program.

LR(G) = min
∑

(i,j)∈EG

d(xi, xj)

s.t.
∑

(i,j)∈EH

d(xi, xj) = 1

d(xi, xj) ≤ d(xi, xk) + d(xk, xj) ∀i, j, k ∈ V
d(xi, xj) ≥ 0.

Our next task will be to show that LR(G) is closely related to Θ(G).

Exercise 4. Show that Θ(G) ≥ LR(G).

We will also give a O(log |V |) · LR(G) upper bound on Θ(G) by rounding. This proof utilizes an inter-
mediate relaxation between LR(G) and θ(G) using something called an L1 metric.

First, we need to define an L1 metric.
An L1 metric d of dimension m on S is defined by a function f : S → Rm,

d(x, y) :=
∑
i∈[m]

|f(x)i − f(y)i|.

Here, f(x)i denotes the i-th co-ordinate of f(x). The distance, d(x, y), in case of L1 metric is also denoted
by ‖f(x)− f(y)‖1 due to its connection with L1 norm.

Exercise 5. Show that an L1 metric is a pseudo-metric.

Call LR1 to be a relaxation of Θ(G) where only L1 metric are allowed.

LR1(G) = min
d: d is an L1 metric

∑
(i,j)∈EG

d(xi, xj)∑
(i,j)∈EH

d(xi, xj)
.

Since space of L1 metrices is a subset of all metrices, we know that LR(G) ≤ LR1(G).
You can also check: a feasible solution x of the integer program for Θ(G) defines an L1 metric over V

with dimension 1 by the function f(i) = xi. This shows that the feasible space of Θ(G) is contained in the
feasible space of LR1(G), which is contained in the feasible space of LR(G). So, we can extend the previous
inequality,

LR(G) ≤ LR1(G) ≤ Θ(G).

The rounding of LR(G) solution to a solution of Θ(G) involves two steps.

– Convert any general metric to an L1 metric over V with a loss of log |V | factor (Bourgain’s theorem).
– Show that the best L1 metric is the one used in Θ(G).
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These two facts and the observation that LR(G) is a linear program gives a O(log |V |) approximation
algorithm for sparsest cut.

For the first fact, Bourgain’s theorem provides a generic conversion of any pseudo-metric to an L1 metric
without much loss. We will not cover the proof of Bourgain’s theorem.

Theorem 1 (Bourgain). Given a pseudo-metric d over a set S, we can find an f : S → Rm for some m,
such that,

‖f(x)− f(y)‖1 ≤ d(x, y) ≤ ‖f(x)− f(y)‖1 ·O(log |V |).
Moreover, this mapping f can be found efficiently.

Bourgain’s theorem implies that we can restrict our attention to L1 metric with a loss of log |V | factor.

Exercise 6. Show that,
LR1(G) ≤ LR(G) ·O(log |V |).

We just need to show LR1(G) = Θ(G) to complete our proof.

3 L1 distance metric

We need to prove that we don’t loose anything by relaxing to L1 metric. The proof will follow in two steps.

1. We can restrict L1 metric to be one dimensional.
2. For any one dimensional L1 metric, there always exist a feasible solution of Θ(G) which does better (or

not worse).

3.1 L1 metric to one dimensional L1 metric

The first part follows from the observation that any m-dimensional L1 metric can be thought of as a convex
combination of one dimensional L1 metric and vice versa. We focus on all possible convex combinations of
one dimensional L1 metric as a feasible set. Since LR(G) is a linear program, for any feasible set, optimum
on the feasible set will be obtained at the vertices.

Exercise 7. Why is the optimum always at the vertices (hint: remember simplex method)?

The conversion from m-dimensional L1 metric to a convex combination of 1-dimensional L1 metric is
natural. If (f(x)1, f(x)2, · · · , f(x|V |)) is the m-dimensional metric, consider m one dimensional metrices with
fi(x) = f(x)i. Then the distance with respect to f is the sum of the distance of fi’s.

Since scaling the metric does not change the objective value, we can divide distance from f by m. Hence,
distance from f/m is a convex combination of distance from f1, f2, · · · , fm.

For the reverse direction, if f =
∑

i αifi, we can take the m dimensional f to be (α1f1, · · · , αmfm).

3.2 One dimensional L1 metric

We have a one-dimensional L1 metric. We need to show that the objective value is smaller than some feasible
solution for Θ(G).

Again, since scaling and shifting of the function f of our metric does not change the feasibility and
objective of our optimization program. We can assume that f is a function from V to {0, 1}.

Arrange the function values in the ascending order, 0 ≤ f(xi1), f(xi2), · · · , f(xi|V |) ≤ 1.
Let Sl, where l ranges from 1 to |V |, to be the set {i1, i2, · · · , il}. Let xl be the feasible solution corre-

sponding to set Sl in the optimization program for Θ(G).
Then distance function of f is a convex combination of xl’s with coefficients f(xil)− f(xil−1

). Again, by
the properties of linear programming, the objective value at f is at least the minimum of objective value at
xl’s.

This proves that generalizing the pseudo-metric in Θ(G) to be any one dimensional L1 metric does not
change the objective value. From the previous section, LR1(G) = Θ(G).
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4 Assignment

Exercise 8. Show that min s− t cut is a special case of non-uniform sparsest cut problem.

Exercise 9. Prove that the Euclidean distance over Rn is a metric.

Exercise 10. Suppose we are given m L1 metrices of dimension 1; f1, · · · , fm. Show that the distance function
is same for f =

∑
i αifi or the m-dimensional f with i-th coordinate being αifi.
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