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We will continue to study the relationship between combinatorial properties of a graph and eigenvalue
of its Laplacian. Again, assume that LG is the Laplacian of G with eigenvalues λ1 ≤ λ2 · · · ≤ λn.

We saw the connection between the first eigenvalue and connectedness and then last eigenvalue and
coloring properties of graphs in previous lectures. In this note, we will consider the second eigenvalue of
Laplacian and show that it characterizes the expansion of the graph. This relationship is known as Cheeger’s
inequality.

We will first give one way to represent expansion in a graph. Cheeger’s inequality gives both, upper and
lower, bounds on this representation. One side of the proof is easy; the proof of other side is via an algorithm
called Fiedler’s algorithm.

For simplicity we will assume that the graph is d-regular. We will suppress subscript in LG and just call
it L, if there is no confusion about the graph.

1 Expansion of a graph

A graph G = (V,E) expands well intuitively if for all non-trivial S ⊆ V , there are lot of edges between S
and V − S. Though, since the graph is d-regular, the number of edges can’t be higher than d|S| (assume
that S is the smaller part).

So, to measure expansion, we need to normalize the number of edges with the total number of edges
going out of the subset too. Hence, we can define edge expansion of S as,

φ(S) :=
E(S, V − S)

d|S|
.

Here, we only consider non-empty subsets S such that V − S is larger than S, i.e., 1 ≤ |S| ≤ |V |/2.
Since d is a constant, and we are only interested in the d-regular case, we will omit the constant factor

of d in the denominator.
A graph will have high expansion if expansion of every subset is large. So, we define edge expansion of

the graph G as,
φ(G) := min

S:1≤|S|≤|V |/2
φ(S).

A graph is called an expander if its expansion is large. Constructing expander graphs is a very active
area of research in complexity theory. We will look at expanders more closely later in this course.

In this lecture note, we will focus on the relation between the second eigenvalue of the Laplacian of a
graph, λ2, and expansion of the graph.

2 Cheeger’s inequality

Let us look at the characterization of λ2 in terms of the quadratic form.

λ2 = min
x:x⊥1

xTLx

xTx
. (1)

Here, 1 is the vector with all entries 1. Remember that 1 is the eigenvector corresponding to λ1.
To give an upper bound on λ2, we just need to pick an x and show that its quadratic form is related to

the expansion φ(G).



A natural choice for x would be the indicator vector for S, where S is the set which minimizes expansion.
The indicator vector 1S is defined to be the vector with 1 at position i if i is in S and 0 otherwise.

Calculating the quadratic form for x = 1S ,

xTLx =
∑

(i,j)∈E

(xi − xj)2 = E(S, V − S).

Similarly,
xTx = |S|.

Exercise 1. Show that two equations above give the trivial inequality λ1 ≤ φ(G).

So, the quadratic form is related to φ(G), but x is not perpendicular to 1.
Consider the modified vector x (you will show in the assignment that x is just the projection of old x on

orthogonal space of 1).

xi =

{
|S| i /∈ S
−|V − S| i ∈ S

The vector x defined above is clearly perpendicular to 1. Calculating the quadratic form,

xTLx =
∑

(i,j)∈E

(xi − xj)2 = E(S, V − S)(|S| − (−|V − S|)2 = E(S, V − S)|V |2.

For the norm of x,
xTx = |V − S||S|2 + |S||V − S|2 = |S||V − S||V |.

Using the characterization of λ2, Eqn. 1,

λ2 ≤
E(S, V − S)|V |2

|S||V − S||V |
.

Noticing that 2|V − S| ≥ |V |,

λ2 ≤
2E(S, V − S)

|S|
.

But S was the optimal set for expansion,

1

2
λ2 ≤ φ(G). (2)

We showed a lower bound on φ(G) using λ2. You can view the optimization program of λ2, Eqn. 1, as a
relaxation for the optimization problem of expansion.

It is easy to give an upper bound on λ2, since it is a relaxation of a minimization problem. We did that
by constructing a feasible x for the λ2 optimization problem.

So, we get a lower bound on expansion using λ2, Eqn. 2. Cheeger’s inequality gives an upper bound on
φ(G) using λ2.

Theorem 1 (Cheeger’s inequality). Given a connected graph G, let L be its Laplacian matrix. Let λ2 be
the second smallest eigenvalue of L and φ(G) be its expansion. Then,

λ2
2
≤ φ(G) ≤

√
2dλ2.

We have already given the proof of one side. For the other side, to show that λ2 is a tight bound on
expansion, we need to show a rounding algorithm for Eqn. 1. This rounding algorithm is called the Fiedler’s
algorithm.
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3 Fiedler’s algorithm

The content of this section is largely taken from Luca Trevisan’s course notes.
Our task is to round a solution of the λ2 optimization problem, Eqn. 1. Given a feasible solution of this

optimization problem, we need to construct a subset of vertices with small expansion.

Note 1. Giving an upper bound in terms of λ2 means showing, expansion is small if λ2 is small.
We are given an x, such that, x ⊥ 1. How should we construct a subset of vertices?

Exercise 2. Can you think of any rounding procedure?

From the lower bound on expansion, we expect to divide the entries of x in two parts, negative and
positive. The rounding algorithm is a slight generalization; it chooses a random threshold t and put i ∈ S if
and only if xi ≥ t.

To summarize, we can write the complete Fiedler’s algorithm.

Find the eigenvector v2 for eigenvalue λ2.
Pick a random t.
for all i do

if xi ≤ t then
Put i in S

end
end
Output the cut S, V − S

Algorithm 1: Fiedler’s algorithm

We will show that there will be a cut S, V −S from this rounding whose expansion is small compared to
the objective value with respect to x. Denote by F (x), the objective value of the λ2 optimization program
on vector x.

Lemma 1. Let x ⊥ 1 and St, V − St be the cut formed by Fiedler’s algorithm using threshold t. If the

objective value is F (x) = xTLx
xT x

then,

∃t : φ(St) ≤
√

2dF (x) and |St| ≤ |V |/2.

Taking x to be the eigenvector for λ2, we can prove the other side of Cheeger’s inequality.

Exercise 3. Show that φ(G) ≤
√

2dλ2 using Lem. 1.

We only need to prove Lem. 1 now. Ideally, we would like to analyze rounding on vectors orthogonal to
1, but it turns out to be difficult.

Instead, we will show that every x ⊥ 1 can be converted into a non-negative vector y with few non-zero
entries for the rounding purposes. Then, we will analyze our rounding for such special vectors, non-negative
vectors with few non-zero entries.

3.1 Conversion to special vectors

The first step will be to convert x ⊥ 1 in to a special vector y.

Lemma 2. Any vector x ⊥ 1 can be converted into a non-negative vector y with at most |V |2 non-zero entries
such that every cut obtained by rounding of y (for different t’s) is also present for some t′ in the rounding
of x. Also,

F (y) ≤ F (x).
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Proof. The method to convert x to y is,

– let m be the median of the coordinates of x, denote z = x−m1.
– split z in to two non-negative vectors with disjoint support, z = z+ − z−.
– choose y from z+, z− with lesser objective value.

Since m is the median, at most half of the coordinates of z are positive and at most half are negative.

So, both z+ as well as z− have at most |V |2 non-zero entries. You will prove in the assignment that any cut
obtained in the rounding of z+ or z− is also obtained in the rounding of x.

To prove the lemma, we only need to prove that,

min(F (z+), F (z−)) ≤ F (x).

We will prove it by showing,

min(F (z+), F (z−)) ≤ F (z) ≤ F (x). (3)

The part F (z) ≤ F (x) is clear because the numerator of objective value does not change from x to z but
the denominator increases for z.

Exercise 4. Show that xTx ≤ zT z.

For the other part, let us compare the quadratic form,

zTLz =
∑

(i,j)∈E

(zi − zj)2,

with the sum of quadratic forms,

(z+)TL(z+) + (z−)TL(z−) =
∑

(i,j)∈E

(z+i − z
+
j )2 +

∑
(i,j)∈E

(z−i − z
−
j )2,

edge by edge.
If both i, j belong to the support of z+ or z−, then the contribution is same in both equations. If one

end, say i, belongs to z+ and other to z−, then contribution is (z+i − (−z−j ))2 in the first equation but

(z+i )2 + (z−j )2 for the second equation.
So, we get that,

zTLz ≥ (z+)TLz + (z−)TLz.

Now,

F (z) =
zTLz

zT z

≥ (z+)TLz+ + (z−)TLz−

zT z

=
(z+)TLz+ + (z−)TLz−

‖z+‖2 + ‖z−‖2

=
‖z+‖2

‖z−‖2 + ‖z−‖2
F (z+) +

‖z−‖2

‖z−‖2 + ‖z−‖2
F (z−)

≥ min(F (z+), F (z−)).

Exercise 5. How do you prove the last inequality?

This prove Eqn. 3 and hence Lem. 2.
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3.2 Analysis for special vectors

The analysis for special vectors is to look at a random threshold and show that the expected value of the
expansion is small.

Lemma 3. Let y be a non-negative vector. The expected value of expansion for the cuts obtained by rounding
y can be bounded by,

EE(St, V − St)

E|St|
≤
√

2dF (y),

where expectation is taken over t2 which varies uniformly from 0 to the T = maxi yi.

Proof. Let the maximum coordinate of y be T , then t2 varies from 0 to T . A vertex i is in St if y2i ≥ t2,

Pr(i ∈ St) =
y2i
T
.

Then,

E|St| =
∑
i

Pr(i ∈ St) =
∑
i

y2i
T
.

Also, an edge is present in the cut St, V − St only if t2 lies between y2i and y2j ,

Pr((i, j) ∈ E(St, V − St) =

∣∣y2i − y2j ∣∣
T

.

So,

EE(St, V − St) =
∑

(i,j)∈E

Pr((i, j) ∈ E(St, V − St)) =
∑

(i,j)∈E

∣∣y2i − y2j ∣∣
T

.

So, we need to bound,

Q :=
E|E(St, V − St)|

E|St|
=

∑
(i,j)∈E

∣∣y2i − y2j ∣∣∑
i y

2
i

.

The numerator of Q can be upper bounded by Cauchy-Schwarz,

Q ≤

√∑
(i,j)∈E(yi − yj)2

√∑
(i,j)∈E(yi + yj)2∑

i y
2
i

.

Using the fact that (yi + yj)
2 ≤ 2(y2i + y2j ),

Q ≤

√∑
(i,j)∈E(yi − yj)2

√
2d
∑

i y
2
i∑

i y
2
i

.

So,

Q ≤

√
2d(
∑

(i,j)∈E(yi − yj)2)√∑
i y

2
i

≤
√

2dF (y).

proving the result.

Since |St| is a strictly positive random variable. Using Thm. 2 (proof is given as an assignment), we can
show that,

Pr

(
E(St, V − St)

|St|
≤ EE(St, V − St)

E|St|

)
> 0.
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Theorem 2. Let a1, · · · , an be non-negative and b1, · · · , bn be strictly positive. Then,

a1 + · · ·+ an
b1 + · · ·+ bn

≥ min
i

ai
bi
.

Exercise 6. Prove the above inequality using Thm. 2.

Hence, there exists a t, s.t.,
φ(St) ≤

√
2dF (y).

3.3 Proof of Lem. 1

In last two sections, we have proved that any x orthogonal to 1 can be converted in to a y, such that,

– y has less than |V |2 non-zero entries,
– objective value F (y) is less than F (x),
– cuts obtained by rounding on y are also cuts obtained by rounding on x,
– rounding on y will give a cut S with at most |V |/2 size, s.t.,

φ(S) ≤
√

2F (y)

d
≤
√

2F (x)

d
.

First three properties follow from Lem. 2 and the last property follows from Lem. 3. These four properties
imply Lem. 1 and hence Thm. 1.

4 Assignment

Exercise 7. Define the normalized Laplacian to be,

NG := D
−1/2
G LGD

−1/2
G = I −D−1/2G AGD

−1/2
G .

Let µ1 be the smallest eigenvalue of NG, show that,

µ1 = minx
xTLGx

xTDGx
.

Exercise 8. Take the projection of 1S on 1, and subtract it out from 1S . Show that you will get a scalar
multiple of the following vector x.

xi =

{
|S| i /∈ S
−|V − S| i ∈ S

Exercise 9. Show that if a cut is obtained by choosing threshold t in rounding of z+(or z−), it is also obtained
for some other threshold t′ and rounding on x.

Exercise 10. Prove the Thm. 2.
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