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We will start exploring connections between eigenvalues of Laplacian and combinatorial properties of the
graph from this lecture. In today’s lecture, we look at the connection of eigenvalues with bipartiteness and
coloring. We will finish by showing interlacing property of eigenvalues when an edge is deleted.

Like last lecture, assume that LG is the Laplacian of a graph G = (V,E). Remember that LG is symmetric
and hence has n real eigenvalues. Let us call them, in the ascending order, λ1 ≤ λ2 ≤ · · · ≤ λn.

Similarly, assume that AG is the adjacency matrix of a graphG = (V,E). Remember that AG is symmetric
and hence has n real eigenvalues. Let us call them, in the descending order, µ1 ≥ µ2 ≤ · · · ≥ µn.

We ordered the eigenvalues of the Laplacian and the adjacency matrix this way because these eigenvalues
are related for a d-regular graph.

Exercise 1. Show that λk = d− µk, for a d-regular graph.

If the graph is not connected, then the adjacency (or Laplacian) matrix is block diagonal. Hence, the
eigenvalues of the complete graph is just the collection of eigenvalues of all the connected components. So,
we assume that our graph is connected.

To remind you, a k-coloring of a graph is a map C : v → [k], such that, no two adjacent vertices have
the same color,

(i, j) ∈ E ⇒ C(i) 6= C(j).

We are generally interested in the minimum number of colors needed to color a graph.

Exercise 2. Show that if you can color G with k colors then you can color it with l > k colors too.

The minimum number of colors needed to color a graph G is called the chromatic number, χ(G), of the
graph.

Exercise 3. Show that the chromatic number of a bipartite graph is 2.

Finding the chromatic number of a graph is an NP-hard problem.

1 Perron Frobenius theorem

We know that every entry of an adjacency matrix AG is non-negative. Perron Frobenius theorem gives us,

– the maximum eigenvalue of AG has the largest absolute value, i.e., µ1 ≥ |µn|,
– the largest eigenvector is entry-wise non-negative.

Proof. You will prove the second property in the assignment. For the first property, we only need to show
that for all unit vectors v, ∣∣vTAv∣∣ ≤ µ1.

Let u be the vector with absolute values of v as coordinates, ui = |vi|. Then,

∣∣vTAv∣∣ =

∣∣∣∣∣∣
∑

(i,j)∈E

A(i,j)vivj

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣
∑

(i,j)∈E

A(i,j)uiuj

∣∣∣∣∣∣ = uTAu.

This follows because A(i,j) is non-negative. But we know that the maximum value of xTAx is µ1 for all
unit vectors x. So,

uTAu ≤ µ1.



If the graph is d-regular, we can convert this statement for the eigenvalues of the Laplacian.

Exercise 4. Show that the maximum eigenvalue of LG is less than or equal to 2d.

2 Bipartiteness and λn

Let us assume that we have a d-regular graph G = (V,E). From the previous discussion we know that
λn ≤ 2d.

It turns out that λn captures the bipartiteness of the graph. In other words, we can prove the following
theorem.

Theorem 1. Given a connected d-regular graph G = (V,E), the largest eigenvalue λn is 2d if and only if G
is bipartite.

Proof. We will prove the easy direction first. By definition of bipartite, we can divide the vertex set V into
two parts, say A and B, such that, there are no edges insides A and inside B. Arrange the vertices so that
all vertices of A come before all vertices of B. Then, AG looks like,(

0 A1

A2 0

)
Here, every row of A and B sum to d. Then, the vector v, such that,

vi =

{
1 i ∈ A
−1 i ∈ B,

is an eigenvector of AG with eigenvalue −d. In other words, there is an eigenvector of LG with eigenvalue
2d.

Exercise 5. Prove the above statement.

For the other direction, we need to prove that λn < 2d if the graph is not bipartite. We will prove that
M = 2dI − LG is positive semidefinite and there is an eigenvalue 0 then the graph is bipartite.

We will use the quadratic form of L for a unit vector x,

xTMx = xT (2dI)x− xTLGx = 2d
∑
i

x2i − xTLGx. (1)

From the previous lecture, we know the quadratic form of LG,

xTLGx =
∑

(i,j)∈E

(xi − xj)2 =
∑
i

dx2i − 2
∑

(i,j)∈E

xixj .

Substituting this value in Eqn. 1,

xTMx = d
∑
i

x2i +
∑

(i,j)∈E

xixj =
∑

(i,j)∈E

(xi + xj)
2.

This shows that M is positive semidefinite and the maximum eigenvalue of LG could be at most 2d.
The quadratic form, xTMx, can only be zero if xi = −xj whenever (i, j) ∈ E. So, the negative and

positive coordinates of x give the bipartition of G.
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3 Coloring and eigenvalues of the adjacency matrix

Most of the content of this section is taken from Dan Spielman’s course notes.
Let us first see the connection between µ1 and degrees in the graph. For a d-regular graph, we know that

µ1 = d. You will show in the assignment that µ1 is less than the maximum degree for a general graph.

Theorem 2. Define d′ to be the average degree of a graph G. Then,

µ1 ≥ d′.

Let d′′ to be the maximum average degree over any subgraph of G. Even then,

µ1 ≥ d′′.

Proof. Again, we will use the fact that µ1 maximizes the quadratic form xTAGx over all unit vectors x. In
other words, xTAx for any unit vector x is a lower bound on µ1.

To prove the first assertion, choose x to be,

1√
n

(1 1 · · · 1).

The quadratic form becomes
∑

i,j Ai,jxixj = 1
n

∑
i,j Ai,j .

Exercise 6. Show that xTAx is the average degree of graph G.

This proves that d′ is a lower bound on µ1.
To prove that d′′ is a lower bound on µ1, we will show that for every subgraph of G, average degree is a

lower bound on µ1. This lower bound is achieved by using x to be the normalized indicator vector for the
subgraph of G.

Exercise 7. Convince yourself that if xS is the indicator vector for a subgraph S of G, then xTSAGxs is the
average degree of S.

Coming back to coloring, you will show in the assignment that you can always color a graph using
maximum degree plus one number of colors. If there is a clique of size k in the graph then you need at least
k colors.

Exercise 8. Show that if a graph G has a clique of size k then µ1 ≥ k − 1.

The next theorem, known as Wilf’s theorem, shows that you can color a graph with bµ1c+ 1 colors.

Theorem 3 (Wilf). Let G be a graph with adjacency matrix AG and µ1 be the maximum eigenvalue of
AG. Then, G can be colored with bµ1c+ 1 colors.

Proof. We will prove the theorem by induction. Since µ1 is more than the average degree by Thm. 2, there
exists a vertex with less than or equal to bµ1c number of neighbours. Call this vertex v.

Look at the subgraph G′ on vertex set V − v. We will show that it can be colored with bµ1c+ 1 number
of colors. Then, vertex v can also be colored with these colors. This is because v’s neighbours are one less
than the total number of colors, leaving one color for the vertex v itself.

To prove that G′ can be colored with bµ1c + 1 colors, using induction, we only need to prove that the
maximum eigenvalue of AG′ is less than the maximum eigenvalue of AG.

This follows simply because AG′ is a submatrix of AG. This fact is given as an assignment.
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4 Eigenvalues with edge deletion

Let LG be the Laplacian of a graph G. We are interested in the eigenvalues of LG′ where G′ is the graph
with one edge deleted from G.

Note 1. Previously we talked about subgraph when a vertex was deleted. This time, we are deleting an edge.
We will use Courant-Fischer theorem, covered in the last class, to relate the eigenvalues of LG and LG′ .

For your reference, the theorem is given below.

Theorem 4 (Courant-Fischer). Let M be a symmetric n×n matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn.
Then,

λk = min
S:dim(S)=k

max
x∈S:‖x‖=1

xTMx.

Here, S is a subspace of Rn. Also,

λk = max
S:dim(S)=n−k+1

min
x∈S:‖x‖=1

xTMx.

Suppose we delete an edge (i, j) from G to obtain G′. Say, v be the vector with 1 at i-th position, −1 at
the j-th position and 0 otherwise. The important thing to notice is that LG = LG′ + vvT .

Exercise 9. Prove the above statement.

The following theorem gives the relationship between the eigenvalues of M and M ′ = M ± vvT , addi-
tion/subtraction by a rank one matrix, using the Courant-Fischer theorem.

Theorem 5. Let λ1 ≤ λ2 · · · ≤ λn be the eigenvalues of M and η1 ≤ η2 · · · ≤ ηn be the eigenvalues of
M ′ = M ± vvT for some vector v. Then,

λi ≤ ηi+1.

Before we start the proof, we need a lemma about subspaces.

Lemma 1. Suppose we are given a subspace S of dimension k and a vector v. For any vector x ∈ S and
x ⊥ v, we can always find a subspace S′ of dimension k − 1, such that,

x ∈ S′ and v ⊥ S′.

Proof. If v ⊥ S then any S′ containing x will work.
Otherwise, let v1, · · · vn be an orthonormal basis of the entire space, such that, v1, · · · , vk is a basis of S

and vk+1, · · · , vn are perpendicular to S.
Then, v can be written as v =

∑n
i=1 αivi. Now, construct a basis w1, · · · , wk by Gram-Schmidt decom-

position, such that, w1 is the unit vector in the direction of
∑k

i=1 αivi.
The following exercise completes the proof.

Exercise 10. Show that the space spanned by w2, · · · , wk is the required subspace S′. That is, x ∈ span(w2, · · · , wk)
and v ⊥ wi for all i 6= 1.

Proof of Thm. 5. From Courant-Fishcher theorem,

ηi+1 = min
S:dim(S)=i+1

max
x∈S:‖x‖=1

xT (M + vvT )x.

If we restrict the feasible space of a maximization problem, the optimal value decreases.

ηi+1 ≥ min
S:dim(S)=i+1

max
x∈S:‖x‖=1,x⊥v

xT (M + vvT )x = min
S:dim(S)=i+1

max
x∈S:‖x‖=1,x⊥v

xTMx
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Look at the space S which minimizes the right hand side of the previous equation with vector x. Let
S′ ⊆ S be the subspace of dimension i form Lem. 1, such that, v is perpendicular to S′ and x is in S′. This
shows that we can just optimize over all subspaces S′ of dimension i with v being perpendicular to S′.

ηi+1 ≥ min
S′:dim(S′)=i,v⊥S′

max
x∈S′:‖x‖=1

xTMx.

Again, we notice that if feasible space is increased than we get a higher value for a minimization problem.

ηi+1 ≥ min
S′:dim(S′)=i

max
x∈S′:‖x‖=1

xTMx = λi.

The last equality follows from Courant-Fischer theorem.

By interchanging M and M ′, Thm. 5 shows that ηi ≤ λi+1. Hence, Thm. 5 implies that the eigenvalues
of LG and LG′ are interlaced with each other.

5 Assignment

Exercise 11. Suppose M ′ is a submatrix of M . Show that the maximum eigenvalue of M ′ is less than the
maximum eigenvalue of M . Similarly, show that the minimum eigenvalue of M ′ is bigger than the minimum
eigenvalue of M .

Exercise 12. Suppose AG is the adjacency matrix of a connected graph. Show that the eigenvector corre-
sponding to the highest eigenvalue is non-negative. Then, show that it is strictly positive.

Exercise 13. Show that if a graph G is not bipartite then µ1 = −µn.

Exercise 14. Show that the largest eigenvalue of the adjacency matrix is smaller than the maximum degree.

Exercise 15. Let dm be the maximum degree in a graph. Prove that you can color a graph with dm + 1
colors.
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