
Lecture 10: Approximation Algorithm for Max Cut

Rajat Mittal

IIT Kanpur

Today, we will see the first application of semidefinite programming in terms of giving the best known
approximation algorithm for max-cut problem.

This algorithm was discovered by Goemans and Williamson in 1990’s and it gave rise to various other
approximation algorithms using similar techniques. The algorithm and the analysis is not difficult but it
introduced a bunch of new ideas.

1 Max cut

Given an undirected graph G = (V,E), the max-cut problem asks for the partition S1, S2 ⊆ V , s.t., the
number of edges going from S1 to S2 are maximized. Remember that since S1, S2 is a partition, so S1∪S2 = V
and S1 ∩ S2 = ∅.

Many problems in the real world can be formulated as a max-cut instance. For example, suppose the
graph gives information about the friendships in a set of students. More concretely, the vertices correspond
to students in the class and there is an edge present between two students if they are friends.

The problem is to put them in two different classroom so that the number of friendships (edges) across
the two rooms is maximized (one measure to stop copying). This is essentially solving a max-cut problem
on the given graph.

Fig. 1. Example of a cut with edges in the cut shown with solid line

The max-cut problem seems very similar to min-cut discussed in the course before. We saw some algo-
rithms for the min cut problem. Can those algorithms be used to solve max-cut problem?

One natural approach is to solve min-cut problem in the complementary graph. We take the original
graph and switch the edges, i.e., we will have edges where there were no edges in the original graph and vice
versa.

Exercise 1. Show that this strategy does not work.

1.1 Integer programming formulation

An integer program is an optimization problem where variables are constrained to be a set of integers. The
max-cut problem can be framed as an integer programming problem.

Given a graph G = (V,E), which has |V | = n vertices and |E| = m edges, introduce variable yi for every
vertex i ∈ [n]. Say, yi = 1 if the vertex is assigned to S1 and yi = −1 if it is assigned to S2. Then the task is
to maximize the number of edges between S1 and S2.

If the edge i, j is part of the cut (between S1 and S2), yiyj = −1 otherwise it is +1. Then
∑

(i,j)∈E
1−yiyj

2
counts the number of edges in the cut. Hence, the following integer program gives us the maximum cut.

max
∑

(i,j)∈E
1−yiyj

2

s.t. yi ∈ {−1, 1} ∀i (1)

We have seen before that NP hard problems can be formulated as integer programs. Hence, we can’t
hope to solve integer programs efficiently (in general).

Even the specific problem of max-cut is known to be NP-hard. So, we do not expect to have a polynomial
time algorithm for this problem. Instead, we are interested in finding an approximation algorithm for this
problem.

An approximation algorithm outputs a solution which is provably not far from the optimal solution. In
our case, we are interested in an algorithm which outputs a cut S, s.t.,

number of edges in S ≥ c. number of edges in max-cut.

Here, c ≤ 1 is a constant and the algorithm will be called a c-approximation algorithm.
You will show in the assignment that a random cut will have half the edges of the graph and hence will

give a randomized .5-approximation algorithm. Can we improve this factor of half? Goemans and Williamson
improved this factor to around .87 using semidefinite programming.

2 SDP relaxation and rounding

Goeman and Williamson gave a randomized algorithm for max-cut with approximation factor of around .87.
The idea from Goemans and Williamson was:

1. convert the integer program into a semidefinite program,
2. solve the semidefinite program,
3. and then convert the solution of SDP into an integer solution ({−1,+1}) again.

Similar techniques have been applied to linear programming too.
The first step of converting the integer program into an SDP is known as relaxation. A relaxation of

an optimization program is another optimization program which, ideally, is easier to solve and and every
solution of original program is also a solution of the new program with the same (or related) objective value.

In the case of Eqn. 1, we change the domain of yi’s to be unit vectors instead of integers {−1,+1}.

max
∑

(i,j)∈E
1−yTi yj

2

s.t. ‖yi‖ = 1 ∀i (2)

Only change from the integer program is that the yi’s are vectors instead of integers in the new program.

Exercise 2. Show that the relaxed program is an SDP.

2

It is clear that any solution of Eqn. 1 will still be a solution of Eqn. 2 with same objective value. We just
need to consider the integers as one dimensional vectors. Hence, the objective value of the SDP is at least
the value of the integer program. The SDP (Eqn. 2) is called the relaxation of the integer program Eqn. 1.

Since the SDP can be solved in polynomial time (with some precision), we can obtain the solutions of
Eqn. 2. Our next goal is to convert these vector solutions into integer ({−1,+1}) solutions. The process of
converting vector solution into integers is called rounding.

Notice that the SDP value in general will be higher than the integer program. So, while rounding a
solution, we expect to lose some factor in the objective. The gap between the SDP value and the integer
program value is known as the integrality gap of the relaxation.

Exercise 3. What kind of rounding techniques can be possible?

The rounding technique given by Goemans and Williamson is very simple and is a randomized rounding.
It is done by choosing a random hyperplane, if vectors lie on one side of the hyperplane (say positive) then
they are assigned +1 otherwise −1.

The complete Goemans and Williamson algorithm can be written as,

1. Given a graph G, solve the SDP relaxation, Eqn. 2, for that graph and obtain the solution {y1, · · · , yn}.
2. Say the vectors yi belong to Rn. Choose a random vector v ∈ Rn.
3. If yTi v ≥ 0 then y′i = 1 otherwise y′i = −1.

How good is this algorithm? Does it produce a cut? If yes, what is the relation between max-cut and the
cut obtained by rounding?

The new integer assignment y′i specifies a cut. Vertices with y′i = 1 go on one side of the cut and y′i = −1
go on the other side. What about the value of this cut?

If it can be shown that
∑

(i,j)∈E
1−y′iy

′
j

2 is a significant proportion of
∑

(i,j)∈E
1−yTi yj

2 , we will get a good
approximation algorithm.

Exercise 4. What could be the best possible value of∑
(i,j)∈E

1−y′iy
′
j

2∑
(i,j)∈E

1−yTi yj
2

We know that
∑

(i,j)∈E
1−yTi yj

2 for optimal y is greater than the value of max-cut (why?). We want to
show that the ratio, ∑

(i,j)∈E
1−y′iy

′
j

2∑
(i,j)∈E

1−yTi yj
2

,

is close to 1 with high probability for all possible yi’s (worst case bound).

3 Analysis of the algorithm

Suppose the optimum value of the SDP is

S =
∑

(i,j)∈E

1− yTi yj
2

.

We will show that the rounded solution {y′1, · · · , y′n} has expected value at least cS with c ≈ .8785. The
expectation is taken over random choice of the hyperplane. Since there are n vectors, we can assume that
they live in Rn.

3

The expected value of the integer solution, using linearity of expectation, can be written as,

Ev∈Rn

∑
(i,j)∈E

1− y′iy′j
2

=
∑

(i,j)∈E

Ev∈Rn

1− y′iy′j
2

.

To calculate this, we need the probability that a random v separates vectors yi and yj .

Ev∈Rn

1− y′iy′j
2

= Prv∈Rn(y′i 6= y′j)

The angle between vectors yi and yj is cos−1 yTi yj (they are unit vectors). Hence, the probability that a
random v separates them is

cos−1 yTi yj
π

.

Fig. 2. Random hyperplane separating two vectors

So, the expected value is ∑
(i,j)∈E

cos−1 yTi yj
π

Now use the change of variable yTi yj = cos θij .

∑
(i,j)∈E

cos−1 yTi yj
π

=
∑

(i,j)∈E
θij
π

= 1
π

∑
(i,j)∈E

θij
1−cos θij (1− yTi yj)

≥
(

min0≤θ≤π
2θ

π(1−cos θ)

)
S

≥ cS

Exercise 5. Give a lower bound on c = min0≤θ≤π
2θ

π(1−cos θ) .

4

Using calculus we can show that c ≥ .8785. Hence,

E(Obj(y′i)) ≥ c Obj(yi) ≥ c max− cut(G).

Here Obj(x) denotes the objective value for the solution x and max− cut(G) is the maximum cut in G.
The second inequality follows from the fact that SDP is relaxation of original maximum cut integer program.
Hence, the algorithm given above is a c approximation algorithm for max-cut.

Exercise 6. Convince yourself that above equation implies a c-approximation algorithm for max-cut.

3.1 Consequences of the algorithm

One consequence from the previous analysis is that the SDP gives a nearly tight bound on the value of the
integer program. In general, once an optimization program is relaxed, there is no guarantee about the value
of the relaxed program. The feasible set is increased and hence the objective value can be arbitrarily higher
(in case of maximization problem) or lower (minimization problems) as compared to the optimum value of
the original program.

The rounding provides a proof that the relaxed value is comparable to the original value. In the case of
max-cut, the SDP value is definitely at least the value of integer program. Rounding shows that the SDP
value is less than

1

c
Obj(y′i) ≤

1

c
max− cut(G).

This shows that the SDP is a tight bound on the value of the integer program.

max− cut(G) ≤ Opt(SDP) ≤ 1

c
max− cut(G).

4 Assignment

Exercise 7. Write the maximum independent set problem as an integer program.

Exercise 8. Learn about Lovasz theta number and the associated semidefinite program. Show that it is a
relaxation of maximum independent set problem.

Exercise 9. Given an undirected graph G = (V,E), show that a random cut in a graph will have expected

value |E|2 . How does this give a randomized approximation algorithm with factor .5?

Exercise 10. Give a deterministic .5 approximation algorithm for max-cut.

Hint: use induction.

5

	Lecture 10: Approximation Algorithm for Max Cut

