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We have shown that Zn is a group under addition and Z+
n is a group under multiplication (set of all

numbers co-prime to n in Zn). Till now, the two operations + and × have been treated differently. But
from our experience with integers and even matrices, these operations satisfy properties like “distribution”
(a(b+ c) = ab+ ac).

Hence, after success in defining an abstract structure with one operation (group), now we define another
abstract structure with 2 operations. The first question is, what should be the defining properties of this
new abstract structure. We will be inspired by integers again and define the concept of Rings.

1 Rings

Consider two operations + and × in a set R.

Definition 1. The set R with the two operations + and × is a ring, if,

– R is a commutative group under +.
– R is associative, closed and has an identity with respect to the operation ×.
– The two operations + and × follow the distributive law, i.e.,

a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

Note 1. We will always assume that the multiplicative identity is different from additive identity. The additive
identity will be denoted by 0 and multiplicative identity by 1. For brevity, we will denote a× b as ab.

Exercise 1. Are the two conditions under the distributive law same?

Exercise 2. Why did we assume commutativity under addition for a ring?

There are many examples of rings, many of these sets we have encountered before.

– The sets Z,Q,R,C are rings with addition and multiplication.
– The set of integers modulo m, Zm, is a ring with addition and multiplication.
– The set of 2× 2 matrices with integer entries is a ring. Actually if R is a ring then set of 2× 2 matrices

with entries in R is also a ring.

Another ring which will be of our particular interest is the ring of polynomials. The set R[x] is the set of
all polynomials with coefficients from ring R. If the multiplication in R is commutative then R[x] is also a
commutative ring.

Note 2. The addition and multiplication of polynomials is defined in the same way as in regular polynomials.

Exercise 3. Check that you can define these operations on polynomials with entries from a ring R. Why do
we need that multiplication is commutative in the original ring?

Hence we have polynomial rings Z[x],Q[x],R[x],C[x] having commutative multiplication.

? Thanks to the book from Dummit and Foote and the book from Norman Biggs.



1.1 Units of a ring

The ring is not a group with respect to multiplication. That is because inverses need not exist in a ring (e.g.,
integers). The elements of rings which have inverses inside the ring with respect to multiplication are called
units or invertible elements.

The set of units for Z are just ±1.

Exercise 4. Prove that the set of units form a group under multiplication.

1.2 Characteristic of a ring

Rings have two identities e× and e+ (we will denote them by 1 and 0 respectively). For a ring an important
criteria is the additive group generated by 1. The elements of that group are 1, 1 + 1, 1 + 1 + 1 and so on.
The smallest number of times we need to sum 1 to get 0 is called the characteristic of the ring.

For some cases, like reals, the sum never reaches the additive identity 0. In these cases we say that the
characteristic is zero.

Exercise 5. Prove that 1× 0 = 0 in a ring.

1.3 Homomorphism for a ring

We have already defined the homomorphism for a group. How should we define the homomorphism for a
ring?

Exercise 6. Try to come up with a definition of ring homomorphism. Remember that the mapping should
be well behaved with respect to both the operators.

When not clear from the context, we specify if it is a group homomorphism or a ring isomorphism.
We can define the kernel of a homomorphism φ : R → S from a ring R to ring S as the set of elements

of R which map to the additive identity 0 of S. A bijective homomorphism is called an isomorphism.
We showed in previous lectures that the kernel of a group homomorphism is a normal subgroup. What

about the kernel of a ring homomorphism? For this, the concept of ideals will be defined.

1.4 Ideal

The ring R is a group under addition. A subgroup I of R under addition is called an ideal if

∀x ∈ I, r ∈ R : xr, rx ∈ I

For example, the set of all elements divisible by n is an ideal in Z.

Exercise 7. Show that nZ is an ideal of Z.

Ideal is similar to the normal subgroup, but belongs to a ring. Suppose I is an ideal. Then we can define
the set of cosets of I with respect to R as R

I . We denote the elements of the set by r + I.

We know that R
I is a group (why?), but it can be shown that it is a ring under the following operations

too.
(r + I) + (S + I) = (r + s) + I (r + I)× (s+ I) = (rs) + I

Exercise 8. Show that the kernel of a ring homomorphism is an ideal.

Kernel of a any ring homomorphism is an ideal and every ideal can be viewed this way. We can define
quotient ring using ideals as we defined quotient group using normal subgroup. It turns out,
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Theorem 1. Given a homomorphism φ : R→ S,

R

Ker(φ)
∼= Img(φ)

Given a set S ⊆ I, we can always come up with the ideal generated by the set. Suppose the multiplication
is commutative, then

I = {r1x1 + r2x2 + · · ·+ rnxn : ∀i ri ∈ R, xi ∈ S},

is the ideal generated by S.

Exercise 9. Prove that it is an ideal.

2 Chinese remainder theorem

One of the most important ways to create a big ring using two small rings is called direct product. Suppose
the two given rings are R and S. The direct product T = R × S is a ring with first element from R and
second element from S.

T = {(r, s) : r ∈ R and s ∈ S}

The two binary operations in ring T are defined by taking the operations component-wise in R and S.

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) = (r1r2, s1s2)

The motivation for Chinese remainder theorem is to break the ring Zm into smaller parts (rings modulo
smaller numbers).

Exercise 10. Come up with an isomorphism between Z6 and Z2 × Z3.

It might seem that we can break Zmn to Zm × Zn.

Exercise 11. Show that there is no isomorphism between Z4 and Z2 × Z2.

It turns out, in the last exercise, 2 and 3 being co-prime to each other is important. We need to define
when two ideals are “co-prime” to each other.

Definition 2. The ideals A and B are said to be comaximal if A + B = R. Here A + B = {a + b : a ∈
A and b ∈ B}.

The definition of comaximal basically says that there exist x ∈ A and y ∈ B, s.t., x+ y = 1.

Note 3. Similarly we can define AB to be the ideal with finite sums of kind ab where a ∈ A and b ∈ B.

Exercise 12. Notice that S = {ab : a ∈ A, b ∈ B} need not be an ideal. Show that AB as defined above is
an ideal.

Exercise 13. If A1, A2, · · · , Ak are pairwise comaximal then show that A1 and A2 · · ·Ak are comaximal too.

With all these definitions (direct product, comaximal) we are ready to state the Chinese remaindering
theorem. We will assume that the ring is commutative.

Theorem 2. Chinese remainder theorem (CRT): Let A1, A2, · · · , Ak be ideals in ring R. The natural map
which takes r ∈ R to (r+A1, r+A2, · · · , r+Ak) ∈ R

A1
× R

A2
× · · · × R

Ak
is a ring homomorphism. If all pairs

Ai, Aj are comaximal then the homomorphism is actually surjective (onto) and,

R

A1A2 · · ·Ak

∼=
R

A1
× R

A2
× · · · × R

Ak
.
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Proof. We will first show this for k = 2 and then it can be extended by induction (the exercise that A1 and
A2 · · ·Ak are comaximal will prove it).

The proof can be broken down into three parts.

1. The map φ which takes r to r +A1, r +A2 is a homomorphism.
2. The kernel φ is A1A2 · · ·Ak.
3. The image is R

A1
× R

A2
× · · · × R

Ak
. In other words the map φ is onto(surjective).

The first part is an exercise. It follows from the fact that the individual maps (δi : R → R
Ai

) which take
r to r +Ai are homomorphisms.

The kernel for this individual maps are Ai’s and hence for the combined map φ, it is A1∩A2. The second
part of the proof requires us to prove that if A1, A2 are comaximal then A1 ∩A2 = A1A2.

Suppose A1 and A2 are comaximal. Hence, there exist x ∈ A1, y ∈ A2 for which x + y = 1. Even
without the comaximal condition A1A2 ⊆ A1 ∩ A2. For the opposite direction, say c ∈ A1 ∩ A2, then
c = c1 = cx+ cy ∈ A1A2 (there exist x ∈ A1, y ∈ A2 for which x+ y = 1). Hence A1 ∩A2 = A1A2.

Now we only need to prove the third part, to show that the map φ : r → (r + A1, r + A2) is surjective.
Since x+ y = 1, φ(x) = (0, 1) and φ(y) = (1, 0). For any element (r1 +A1, r2 +A2) of R

A1
× R

A2
, we can prove

φ(r2x+ r1y) = (r1 +A1, r2 +A2). Hence φ is surjective.

φ(r2x+ r1y) = φ(r2x) + φ(r1y) = (A1, r2 +A2) + (r1 +A1, A2) = (r1 +A1, r2 +A2).

We will see various applications of Chinese remaindering theorem throughout this course. The most
important one is, given a number n = pa1

1 · · · par
r ,

Zn
∼= Zp

a1
1
Zp

a2
2
· · ·Zpar

r
.

The proof is left as an exercise.
This isomorphism and its proof will enable us to answer one of the questions posted earlier. Suppose

we need to find a number r which leaves remainder r1 modulo n1 and remainder r2 modulo n2. Chinese
remainder theorem tells us that such a r always exists if n1 and n2 are co-prime to each other. Through the
proof of CRT,

r = r1n2(n−1
2 mod n1) + r2n1(n−1

1 mod n2).

Exercise 14. Check that the above solution works.

The same can be generalized to more than 2 numbers. How (try to give the explicit formula)?
Now, we will consider two abstract structures which are specialization of rings, integral domains and

fields.

3 Integral domain

Our main motivation was to study integers. We know that integers are rings but they are not fields. We also
saw (through exercise) that integers are more special than rings. The next abstract structure is very close to
integers and is called integral domain.

An integral domain is a commutative ring (multiplication is commutative) where product of two non-zero
elements is also non-zero. In other words, if ab = 0 then either a = 0 or b = 0 or both.

Exercise 15. Give some examples of an integral domain. Give some examples of rings which are not integral
domains.

We said that integral domain is closer to integers than rings. The first thing to notice is that integral
domains have cancellation property.
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Exercise 16. If ab = ac in an integral domain, then either a = 0 or b = c.

Now we will see that the properties of divisibility, primes etc. can be defined for integral domains.

Given two elements a, b ∈ R, we say that a divides b (b is a multiple of a) if there exist an x ∈ R, s.t.,
ax = b.

Exercise 17. If a divides b and b divides a then they are called associates. Show,

– Being associates is an equivalence relation.

– a and b are associates iff a = ub where u is a unit.

You can guess (from the example of integers), the numbers 0 and units (±1) are not relevant for divisibility.
A non-zero non-unit x is irreducible if it can’t be expressed as a product of two non-zero non-units. A non-zero
non-unit x is prime if whenever x divides ab, it divides either a or b.

Notice that for integers the definition of irreducible and prime is the same. But this need not be true in
general for integral domain. For examples, look at any standard text.

Exercise 18. What is the problem with defining divisibility in ring?

4 Fields

If you look at the definition of rings, it seems we were a bit unfair towards multiplication. R was a commutative
group under addition but for multiplication the properties were very relaxed (no inverses, no commutativity).
Field is the abstract structure where the set is almost a commutative group under multiplication.

Definition 3. The set F with the two operations + and × is a field, if,

– F is a commutative group under +.

– F − {0} is a commutative group under × (it has inverses).

– The two operations + and × follow the distributive law, i.e.,

a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

Exercise 19. Why are we excluding the identity of addition when the multiplicative group is defined?

As you can see Field has the strongest structure (most properties) among the things (groups, rings etc..)
we have studied. Hence many theorems can be proven using Fields. Fields is one of the most important
abstract structure for computer scientists.

Note 4. The notion of divisibility etc. are trivial in fields.

Let us look at some of the examples of fields.

– Z is NOT a field.

– Q, R and C are fields.

– Zm is a field iff m is a . Ex: Fill in the blank.

The last example is of fields which have finite size. These fields are called finite fields and will be of great
interest to us.
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5 The chain of abstract structures (advanced)

We have studied three different abstract structures this week, ring, integral domain and fields. Actually there
are a lot of abstract structures which can arise in between rings and fields. They are defined by the properties
which have been fundamental in the study of number theory. Take a look at the definition of all of these
structures and the relation (order) between the properties.

Exercise 20. For how many of them can you guess the defining properties?

Rings ⊃ Commutative Rings ⊃ Integral domain ⊃ Unique factorization domain ⊃ Principal ideal domain
⊃ Euclidean domain ⊃ Field

This list is taken from Wikipedia. You can interpret this chain of inclusion as the fact that Euclidean gcd
algorithm (Euclidean domain) implies the every any number of the form ax+ by can be written as dgcd(x, y)
(principal ideal domain). And principal ideal domain implies unique factorization. Then unique factorization
implies, ab = ac ⇒ b = c assuming a 6= 0.

Exercise 21. Prove all the above assertions.

6 Assignment

Exercise 22. Give a rule that is satisfied by Integers but need not be satisfied by rings in general.

Exercise 23. Find the set of units in the ring Z8.

Exercise 24. If all the ideals in the ring can be generated by a single element then it is called a principal
ideal domain. Show that Z is a principal ideal domain.

Exercise 25. Show that if ab = 0 for a, b in a field F then show that either a = 0 or b = 0.

Exercise 26. What are the units of a field?

Exercise 27. Show that a finite integral domain is a field.

Exercise 28. Show that the characteristic of a finite field is always a prime.

Exercise 29. Find a number n which leaves remainder 23 with 31, 2 with 37 and 61 with 73.

Exercise 30. Given a number n = pa1
1 · · · par

r , show that,

Zn
∼= Zp

a1
1
Zp

a2
2
· · ·Zpar

r
.

Where ∼= denotes that two rings are isomorphic.

Exercise 31. Find a number n which leaves remainder 3 when divided by 33 and 62 when divided by 81.

Hint: Trick question.

Exercise 32. Suppose φ(n) is the number of elements co-prime to n. Prove that if m and n are co-prime,
then φ(mn) = φ(m)φ(n).

Hint: Chinese remainder theorem.

Exercise 33. Show that mZ and nZ are comaximal in Z.
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