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We have learnt about groups, rings, integral domains and fields till now. Fields have the maximum
required properties and hence many nice theorems can be proved about them. For instance, in previous
lectures we saw that the polynomials with coefficients from fields have unique factorization theorem.

One of the important sub case of fields is when they are finite. In this case the fields can be completely
characterized up to isomorphism and have lot of applications in computer science. We will cover the charac-
terization and an application in these lecture notes.

1 Characteristic of a field

We have seen how the characteristic of a ring was defined.

Exercise 1. What is the characteristic of a ring?

Since field is a special case of rings, the definition can be applied to fields too. The characteristic of a
field F is the minimum n ∈ N, s.t., n1 = 0. Here n1 denotes the addition of multiplicative identity n times,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

In general, the characteristic might not exist for field (say R). In that case we say that characteristic is
zero. For the case of finite field though, the characteristic is always a positive number. Why?

Suppose n is a characteristic of a finite field. If n is composite, say n = pq, then (p1)(q1) = 0. But F
does not have a zero divisor (it is a field) and hence either p1 = 0 or q1 = 0, establishing contradiction. So
we get the theorem,

Theorem 1. The characteristic of a finite field is always a prime.

Note 1. p1 = 0 implies that pf = 0 for all f ∈ F , the proof is given as an exercise.
How does a field with characteristic p looks like? We can look at the additive structure. It turns out that

it can be seen as a vector space over Zp.

Exercise 2. Review the definition of a vector space over a field.

Theorem 2. A finite field F of characteristic p is a vector space over Zp. Hence, if there are r basis elements
then |F | = pr.

Proof. Define nf to be f + f + · · ·+ f︸ ︷︷ ︸
n times

. From the previous discussion, the only relevant values of n are

{0, 1, · · · , p− 1}.
Let us look at the set generated by S = {f1, f2, · · · , fk}. We call it the span,

span(S) = {n1f1 + n2f2 + · · ·+ nkfk : ni ∈ {0, 1, · · · , p− 1} ∀i}.

Exercise 3. Show that span(S) is the smallest additive group containing S.

Clearly one set exist for which span is the entire field (the field itself).

? Thanks to the book from Dummit and Foote and the book from Norman Biggs.



Exercise 4. Show that F is a vector space over Zp.

Say a basis B = {b1, b2, · · · , br} is the minimal set of elements such that span(B) = F . We have assumed
that B has r elements. Then,

span(B) = {n1b1 + n2b2 + · · ·+ nrbr : ni ∈ {0, 1, · · · , p− 1} ∀i}.

We claim that no two elements of the above set are same. If they are then some element of B can be
written as a linear combination of others, violating the minimalness of B. Hence span(B) has no duplicates
and it is equal to F . So the cardinality of F is pr.

Note 2. The theorem shows that as an additive group, a field of size pr, is isomorphic to (Zp)r.
By the previous theorem we have proved that every finite field has characteristic some prime p and

number of elements are pr, some power of its characteristic. Hence the number of elements in a finite field
can only be a prime power.

Does there exist a finite field for every prime power. Clearly for every p, Zp is a field.

1.1 Finite fields of order pr

To construct fields of cardinality pr, we use the concept of field extension. Suppose g is an irreducible

polynomial in Zp. Then we know that
Zp[x]
(g) is a field (from field extensions).

Exercise 5. Show that Z3[x]
x2+1 is a field. What is its cardinality? What is the characteristic?

It is clear that in such a field p1 = 0. That shows that characteristic of the field is p. The different
elements of this field are all the remainder polynomials modulo g. In other words, all the polynomials of
degree deg(g)− 1 with coefficients from Zp. So the number of elements in this field are pdeg(g).

This shows that to construct a finite field of size pr, we need to find an irreducible polynomial of degree r.
It is known that such an irreducible polynomial always exist. The proof of this statement will not be covered
in this class.

So there always exist at least one field of size pr. It can actually be shown that all such fields of size pr

are isomorphic and we call them Fpr . For r = 1, this field is Zp, we will also call it Fp.

Exercise 6. What is the difference between vector space Z2
3 and field Z3[x]

x2+1?

We won’t prove that there exist a unique field of size pr up to isomorphism. But we will provide a partial
justification. We have seen that the additive group of any field of size pr is isomorphic to (Zp)r. In the next
section we will show that their multiplicative group is also isomorphic to Zpr−1 (it is cyclic). So for any two
finite fields of same size, their additive groups and multiplicative groups are isomorphic.

Exercise 7. Why is this a partial and not full proof that two fields of the same size are isomorphic?

1.2 Primitive element

We need to show that the multiplicative group of any field is cyclic. That means, there exist an element
f ∈ F , s.t., the order of f is |F | − 1 (why did we subtract 1?). Such an element generates the whole group
F − {0} = {f0, f1, · · · , f |F |−2}.

Definition 1. Primitive element: An element f of F which generates the multiplicative group of the field F
is called the primitive element of F .

To show that any field’s multiplicative group is cyclic, we just need to show the existence of a primitive
element.
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Theorem 3. For any finite field F , there always exist a primitive element of F .

Proof. Lets call the multiplicative group F ∗ = F − {0} and |F ∗| = n. Since F ∗ has order n, for all elements
x of F ∗,

xn − 1 = 0

So there are exactly n roots of the above equation (why exactly n?).
For any element x, the order d divides n, hence x is a solution of p(d) = xd − 1 for some d | n. Notice

that the polynomial p(d) has at most d roots.
For the sake of contradiction, suppose there are no primitive elements. Then every element has order

strictly less than n. We would like to show that there are not enough roots (n) for the polynomial xn − 1.
So we would like to show, ∑

d<n,d|n

d < n (1)

Note 3. There is a strict inequality d < n in the summation index as well as the inequality.

Exercise 8. Show that this is not true for some n.

The reason why the above strategy does not work is that we are counting lot of elements multiple times.
A solution of p(d) will be a solution of p(2d), p(3d), · · · . There is a decent chance that some of numbers
2d, 3d, · · · might be divisors of n too.

So say e(d) is the number of elements with order exactly d. Hence instead of Eq. 1, the contradiction will
be shown by proving the equation, ∑

d<n,d|n

e(d) < n (2)

This equation follows from the following two claims. The proof of first one is left as an exercise, other
will be proved here.

Note 4. φ(d) is number of elements co-prime (gcd 1) to d.

Claim. For a number n,
∑

d|n φ(d) = n.

Proof hint: For any number k ≤ n, look at gcd(k, n) and k
gcd(k,n) .

Claim. If there exist an element of order d then φ(d) = e(d).

Proof. Suppose the element with order d is x. Then the d roots for xd − 1 are precisely x0, x1, · · · , xd−1
(these are d roots and there are at most d roots). The order of xk is d

gcd(d,k) .

Exercise 9. Suppose the order of x in a group G is d. Show that for xk, the order is d
gcd(d,k) .

Hence the elements with order d are precisely xk, s.t., gcd(d, k) = 1. So e(d) = φ(d).

Using the claims,

n =
∑
d|n

φ(d) >
∑
d|n

e(d).

The inequality follows because e(d) ≤ φ(d) and we have assumed e(n) = 0. So the equation 2 follows
from non-existence of primitive element and hence we get the contradiction.
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Note 5. By definition of e(d),
∑

d|n e(d) = n. Hence there should be equality in the above equation. That

means there are exactly φ(d) elements of order d in a field n where d | n. Specifically, there are φ(n) primitive
elements for a field F with size n+ 1.

Since Zp is a field, by previous theorem, Fp = Zp is cyclic as a multiplicative group. This can be generalized
to show that even Z×

pk is cyclic.

Exercise 10. Show that Z×
pk is NOT isomorphic to the multiplicative group of Fpk for k > 1.

Theorem 4. If n = pk for some power k of an odd prime p then G = Z×n is cyclic.

Note 6. This is not true for even prime, we have seen that Z×8 is not cyclic.

Exercise 11. Find out where did we use the fact that p is odd.

Proof. Assume that t = pk−1(p− 1), the order of the group G.
We know that Fp is cyclic and hence have a generator g. We will use g to come up with a generator of

G. First notice that,
(g + p)p−1 = gp−1 + (p− 1)gp−2p 6= gp−1 mod p2.

So either (g+p)p−1 or gp−1 is not 1 mod p2. We can assume the latter case, otherwise replace g by g+p
in the argument below.

So gp−1 = 1 + k1p where p - k1. So using binomial theorem,

gp(p−1) = (1 + k1p)
p = 1 + k2p

2.

Where p - k2

Exercise 12. Continuing this process, show that,

gp
e−1(p−1) = 1 + kep

e,

with p - ke.

From the previous exercise gt = 1 mod pk but gt/p 6= 1 mod pk. The only possible order of g then is
pk−1d where d is a divisor of p− 1 (because the order has to divide t, Lagrange’s theorem).

If the order is pk−1d, then

gp
k−1d = 1 mod pk = 1 mod p.

But gp = g mod p (why?). That implies gd = 1 mod p. Since p− 1 is the order of g modulo p (g is the
generator), implies d = p− 1. Hence proved.

2 Application: The classical part of quantum algorithm for factorization

One of the most important achievements of quantum computing has been to solve factorization in polynomial
time. There is no known efficient classical algorithm to factorize a number. The problem is easy to state,
given a number n, find the factorization of n.

Note 7. An efficient algorithm for factorization runs in time polynomial in log n, since the input size is log n
(the number of bits needed to specify n).

The quantum algorithm works by reducing the problem classically to something known as the hidden
subgroup problem (HSP). Shor’s factorization algorithm (1994) can be reduced to giving an efficient algorithm
to solve HSP on a quantum computer.

The quantum algorithm for HSP is out of scope of this course. But we will present the classical reduction
from factorization to HSP, a neat application of many things we learnt in this course.
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2.1 Hidden subgroup problem (HSP)

In the hidden subgroup problem, we are given a group G and a function f : G→ R which hides a subgroup
H. By hiding a subgroup means that the functions assign the same value to two elements from the same
coset and different values to elements from a different coset. The subgroup H is not known and the task is
to find this subgroup.

Note 8. For this case, we assume that a black-box is given which computes the value of a function on
group elements. In practice, if we can compute the function efficiently then the algorithm for finding hidden
subgroup is efficient too.

The interest in this problem is because many problems like order-finding, discrete logarithm can be
thought of as HSP’s over finite abelian groups. Their is a quantum algorithm for solving HSP over any finite
abelian group. If we can solve HSP on non-abelian groups then it can be used to solve important problems
like graph isomorphism and shortest vector problem in a lattice.

The problem of order-finding is that given an element g in a group G, find the order of g in G (smallest
r, s.t., gr = 1). Lets see how order-finding can be thought of as an example of HSP in Z.

Suppose the order is r (the quantity we need to find). The set of multiples of r form a subgroup of Z known
as rZ. The cosets are the residue classes modulo r. Given an element x ∈ Z, the function ax = ax mod r is
constant on cosets and distinct on different cosets.

Exercise 13. Prove the above assertion.

This function can be computed efficiently (repeated squaring) and hence order-finding can be posed as a
hidden subgroup problem.

Note 9. Above discussion shows that order-finding is an HSP over an abelian group (Z, which is not finite).
The quantum algorithm for finite abelian groups can be modified to handle this case too.

2.2 Factorization to order-finding

In this section we will reduce the factorization of n to order-finding in the group Z×n . Hence, complete the
reduction from factorization to hidden subgroup problem.

We will first get rid of the trivial cases, it can be easily checked if the number is even or if n = mk (take
the square root, cubic root etc. up to log n). So it can be assumed that n is a number of type kk′ where k
and k′ are co-prime and odd. We are interested in finding a non-trivial factor of n (not 1 or n). Once found
one factor, we can repeat the procedure to find the complete factorization.

Look at the square roots of 1 mod n, i.e., b for which b2 = 1 mod n. Clearly there are two solutions
b = ±1 mod n. Suppose there exist a b 6= ±1 mod n. Then b2 − 1 is divisible by n and b± 1 is not. So the
gcd(b± 1, n) will give non-trivial factors of n.

The reduction from factorization to order-finding basically searches for such a b. It can be shown using
Chinese remainder theorem that such a b always exists (exercise).

Exercise 14. In the if statement of the algorithm why didn’t we check that b = 1 mod n?

The only thing we need to show is that there are enough a’s for which b = ar/2 6= ±1 mod n is a
square-root of 1 mod n.

Note 10. The quantum algorithm is a probabilistic algorithm, hence showing that there are enough “good”
a’s works.

Theorem 5. Suppose n is a product of two co-prime numbers k, k′ > 1. For a randomly chosen a, the
probability that a has an even order r and ar/2 6= −1 mod n is at least 1/4.
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Check if n is even or of the form n = mk ;
Pick an a, s.t., gcd(a, n) = 1 (else we have already found a non-trivial factor of n) ;
for i = 1, · · · do

Find the order of a and call it r (use the quantum algorithm for order-finding) ;
if r is odd or ar/2 = −1 mod n then

Pick another a co-prime to n ;
else

Found b = ar/2 6= ±1 mod n, square root of 1 ;
Find the non-trivial factors from gcd(b± 1, n) ;
Break;

end
end

Algorithm 1: Algorithm for factorization using order-finding

Proof. This proof is taken from the book Quantum computing and Quantum information by Nielsen and
Chuang. We introduce a notation, pow2(z), the highest power of 2 that divides any number z.

First we prove a lemma for a number q = pk, which is a prime power. Say m = φ(q) = pk−1(p − 1)
(exercise). By theorem 4, Z×q is cyclic, say g is the generator (m is the least number, s.t., gm = 1 mod q).

Suppose l = pow2(m) (m is even and hence l ≥ 1).

Lemma 1. Say, we choose a random element from Z×q . With probability 1/2, the order r satisfies pow2(r) =
l.

Proof. We know that gt has order m
gcd(m,t) . Then it can be easily seen that pow2(r) = l iff t is odd.

Now consider the prime factorization n = pi11 · · · piss . By Chinese remainder theorem,

Z×n ∼= Z×
p
i1
1

× · · · × Z×
pis
s
.

So, to randomly chose a, we can pick random a1, · · · , as from the respective Z×pi ’s. Say rj are the orders

of aj modulo p
ij
j .

Claim. Suppose the order r of a is odd or ar/2 = −1 mod n. Then pow2(rj) is same for all j.

Proof. The order is odd iff all rj ’s are odd. Otherwise, if ar/2 = −1 mod p
ij
j then none of rj divide r/2 (we

use the fact that pi’s are not 2).

All the rj ’s divide r but not r/2, so pow2(rj) is the same.

From lemma 1, with half the probability, The order rj of aj will be such that pow2(rj) = lj (where

lj = pow2(p
ij−1
j (pj − 1))). Call the case when pow2(rj) = lj as the “first” case and other the “second” case.

We know that both cases happen with probability 1/2.

Notice that lj ’s only depend on n. If all lj are equal, pick a1’s from first case and a2 from the second case.
If they are unequal, say l1 6= l2, then pick the a1, a2 from the first case. So in either scenario, rj ’s can’t be
all equal. Which implies r is even and a

r
2 6= 1 mod n (by claim). Since we have only fixed at most 2 cases

out of s, the probability is at least 1/4.

Hence the reduction from factorization to order finding is complete.
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3 Assignment

Exercise 15. Biggs: Prove that the set of all elements of type 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

form a subfield.

Exercise 16. If p1 = 0, prove that pf = 0 for all f ∈ F .

Exercise 17. Suppose in a field F , p1 = 0 for a prime p. Show that the characteristic of that field is p.

Exercise 18. Show that any field of size p is isomorphic to Zp.

Hint: 0 and 1 should exist in that field. Now construct the obvious isomorphism.

Exercise 19. Find a primitive element in field F23

Exercise 20. Write a program to find if a degree 2 polynomial is irreducible or not in Fp for a prime p.

Exercise 21. Construct the field F49.

Hint: Look at square roots modulo 7.

Exercise 22. Prove the claim 4.

Hint: Look at any number m less than n as m = gcd(m,n).m′.

Exercise 23. Discrete logarithm: Given an element a and a generator g in the group G = Z×m, the discrete
log is the problem of finding least l, s.t., gl = a. Show that it can be cast as an HSP.

Hint: Use the function axgy where x, y ∈ Z|G|.

Exercise 24. Show that for n = kk′ where k, k′ are co-prime, there exist a square root of 1 mod n which is
not ±1 mod n.

Exercise 25. If n = pk, show that φ(n) = pk−1(p− 1).
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