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Introduction

Please look at the course policies mentioned in the course homepage. Most importantly, any immoral behavior
like cheating and fraud will be punished with extreme measures and without any exception.

1.1 What is this course about?

Take a look at the following questions.

• Give a number n which leaves a remainder of 20 when divided by 23 and 62 when divided by 83.

• How many different necklaces can you form with 2 black beads and 8 white beads? How many necklaces
can you form with blue, green and black beads?

• What are the last two digits of of a40 when a is not divisible by 2 or 5?

• We know that there is an explicit formula for the roots of quadratic equation ax2+bx+c = 0, −b±
√
b2−4ac
2a .

Similarly there are explicit formulas for degree 3 and degree 4 equations. Why don’t we have something
for degree 5?

• When does the equations of the form x− y = z make sense? If x is a natural number or an integer or a
matrix or an apple or a permutation?

When we look at these questions, they seem unrelated and seem to have no common thread. Mathemati-
cians realized long time back that problems in algebra, number theory and even geometry can be solved
using very similar techniques. They were interested in finding out the common element among these proofs
and were interested in searching for more domains where such techniques are applicable. It turns out that
there is a single mathematical theory which can help us understand these questions in a single framework
and give us answers to these seemingly non-related topics.

The mathematical framework which ties these questions together is called abstract algebra. Not surpris-
ingly, given the name, the course is going to be about abstract algebra.

Exercise 1.1. What does abstract mean?

Note 1.2. The exercises given in the course notes are practice problems with the exception of this particular
introduction. The exercises given in this particular document are to motivate the study of abstract algebra.
You should try to think about them but remember that there are no clear answers.

We will precisely study the mathematical structures which can represent numbers, matrices, permuta-
tions, geometric objects under different parameters. The first step would be to define these mathematical
(algebraic) structures like groups, rings and fields. The next step is to find properties of these algebraic



structures. Finally we will also see how these properties give so many beautiful results in different areas of
mathematics.

Lets start with a more basic question,

Exercise 1.3. What does algebra mean?

1.1.1 Arithmetic and algebra

Most of the people when asked the above question, think about numbers, equations and operations between
them. So lets make the previous question more precise. What is the difference between arithmetic and
algebra? Arithmetic is the study of numbers and the operations (like addition, subtraction, multiplication)
between them. Algebra, intuitively, talks about equations, variables, symbols and relations between them.

The primary difference is the use of variables, which can stand for an unknown or a group of numbers.
These variables are somewhat abstract but really help us in manipulating equations and solving them. It
would be too cumbersome to write things in words instead of using equations and variables.

Exercise 1.4. Give an example where using a variable helps you to write a statement concisely.

Now we know what algebra is, lets talk about abstract part of it.

1.1.2 Abstraction

All of us like numbers (or at least understand the importance of it). One of the reason is that numbers are
very well-behaved. In other words, there are so many nice properties that it is easy to manipulate and work
with numbers. Lets look at one of the most fundamental properties,

Theorem 1.5. Fundamental theorem of arithmetic: Every integer greater than 1 can be uniquely expressed
as the product of primes up to different orderings.

Since this property is so useful, we should ask, are there other objects which satisfy similar theorems.

Exercise 1.6. Do we have unique factorization theorem for matrices or permutations.

There is a very important methodology to generalize given proofs. You look at the proof and figure out
the crucial step and properties which make the proof work. So one way to approach this question would be,
carefully look at the proof of the theorem and figure out the properties of integers we have used at different
step. Then check if another mathematical object satisfies the same properties.

In other words, any mathematical object which satisfies these properties will also have a unique factor-
ization theorem. The abstract object which has all these properties can be given an appropriate name. This
is similar to variables. As variables can take different values, this abstract object can be assigned different
mathematical objects.

We will turn this method upside down. We will consider some basic properties and give a name to the
abstract structure which satisfies these “basic properties”.

Exercise 1.7. Who decides these basic properties?

Using these “basic properties” we will come up with multiple theorems like the unique factorization
theorem above. By the above discussion any mathematical object (from arithmetic, algebra, geometry or
anywhere else) which has these “basic properties” will satisfy all the theorems too. Hence in one shot we will
get theorems in diverse areas.

You are already familiar with one such abstract structure, set. A collection of objects is called set and it
needs no other property to be satisfied.

Exercise 1.8. What kind of theorems can you prove for sets?

In the course we will look at the collection of objects (sets) with certain composition properties. These
will give rise to groups, rings etc.. The first such abstraction we will study is group.

Exercise 1.9. Should we choose as many basic properties as possible or as less basic properties as possible?
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2

Groups

These notes are about the first abstract mathematical structure we are going to study, groups. You are
already familiar with set, which is just a collection of objects. Most of the sets we encounter in mathematics
are useful because of the operations we can perform on them. We can do addition, multiplication, AND, OR,
take power etc..

Sets, by definition, need not have such operations. For example, S = {Apple,Oranges, CS203,Monitor}
is a set. But, if we look at more interesting sets like integers, matrices, permutations etc., we generally have
operations which can be done on them. For example, you can add matrices, multiply permutations, add and
multiply integers and so on.

Our next task is to define an abstract object (say a special set) with operation to compose elements
inside the object. But first lets ask a basic question. What are the nice properties of addition of two natural
numbers? What about integers?

To begin with, it is great that we can add two numbers, that is, the addition of any two numbers is a
number. Another property not present in natural numbers is that we can always solve a + x = b (a, b are
given, x is unknown). Notice that we have to assume the existence of Zero.

Exercise 2.1. Can you think about other properties? Do they follow from the properties mentioned above?

2.1 Groups

A group G is a set with binary operation ∗, s.t.,

1. Closure: For any two elements a, b ∈ G; their composition under the binary operation a ∗ b ∈ G.
2. Associativity: For all a, b, c ∈ G, we have a ∗ (b ∗ c) = (a ∗ b) ∗ c. This property basically means that any

bracketing of a1 ∗ a2 ∗ · · · ∗ ak is same (exercise).
3. Identity: There is an element identity (e) in G, s.t., a ∗ e = e ∗ a = a for all a ∈ G.
4. Inverse: For all a ∈ G, there exist a−1 ∈ G, s.t., a ∗ a−1 = a−1 ∗ a = e.

Note 2.2. Some texts define binary operation as something which has closure property. In that case, the first
property is redundant. For the sake of brevity, it is sometimes easier to write xy instead of x ∗ y.

Sometime we denote a group by its set and the operation, e.g., (Z,+) is the group of integers under
addition.

Exercise 2.3. Show that integers form a group under addition (In other words, Integers have a group
structure with respect to addition). Do they form a group under multiplication?

You can think of groups as being inspired by integers. In other words, we wanted to abstract out some of
the fundamental properties of integers. We will later see that all groups share some properties with integers,
but more interestingly, there are a lot of other groups which do not look like integers. That means there are



some properties of integers which are not captured by the definition of groups. So what properties of integers
do you think is not captured by groups?

To start with, we haven’t specified commutativity as one of the basic properties. The properties are chosen
so that we have many examples of groups and simultaneously we can prove a lot of theorems (properties) of
this group structure. Later we will see that some important groups do not have commutativity property.

Definition 2.4. A group is called commutative or abelian if, ∀a, b ∈ G; a ∗ b = b ∗ a.

2.1.1 Examples of groups

Exercise 2.5. Can you think of any other group except integers under addition? Is it commutative?

The whole exercise of abstraction will be a waste if integers (addition) is the only set which follow group
property. Indeed, there are many examples of groups around you, or at least in the mathematics books
around you.

• Integers, Rationals, Reals, Complex numbers under addition. Clearly for all these 0 is the identity element.
The inverse of an element is the negative of that element.

• Rationals, Reals, Complex numbers (without zero) under multiplication. Identity for these groups is the
element 1. Why did we exclude integers?

• Positive rationals, positive reals under multiplication.
• The group Zn, set of all remainders modulo n under addition modulo n. Will it be a group under

multiplication? How can you make it a group under multiplication?

Till now all the examples taken are from numbers. They are all subsets of complex numbers. Lets look
at a few diverse ones.

• The symmetries of a regular polygon under composition. In other words, the operations which keep the
polygon fixed. The symmetries are either obtained through rotation or reflection or combination of both.
This group is called Dihedral group.

• The set of all permutations of {1, 2, · · · , n} under composition. What is the inverse element?
• The set of all n× n matrices under addition. The identity in this case is the all 0 matrix, 0 · · · 0

...
. . .

...
0 · · · 0


• The set of all n× n invertible matrices of real numbers. What is the identity element?

We have seen so many examples of groups. Are they all similar (we will define the word similar later).
Can we represent a group in a succinct way. One of the trivial representation is the multiplication table
of the group. It is a matrix with rows and columns both indexed by group elements. The (i, j)th entry
denotes the sum of ith and jth group element. For example, lets look at the multiplication table of Z+

5 under
multiplication. Here Z+

5 denotes all the remainders modulo 5 Co-prime to 5 (gcd with 5 is 1).

1 2 3 4
1 1 2 3 4
2 2 4 1 3
3 3 1 4 2
4 4 3 2 1

Exercise 2.6. Notice that every element occurs exactly once in every row and every column. Do you think
this property is true for any group or just Z5?

Multiplication table gives us all the information about the group but is a pretty long description. Specif-
ically it is quadratic in the size of the group. It turns out that groups have lot of properties which can help
us in giving a more succinct representation. We already showed one property, that the identity is unique.
What other theorems can be shown for groups?
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2.2 Properties of groups

To start with, we need to define few quantities. Suppose we are given an element x 6= e of group G. What
other elements can be constructed with x. The composition with identity will not give anything new, so lets
compose it with itself. Since G is a group, x2 := x∗x, x3 := x2 ∗x (notice the new notation) and so on will be
elements of group G. In this way we can create new elements in G except if these elements start repeating.

Suppose G is finite, then sooner or later there will exist i and j, s.t., xi = xj .

Exercise 2.7. Show that the first element which will repeat is e.

The least positive j for which xj = e is called the order of x and is denoted by |x|. Clearly the only
element with order 1 is e and everything else will have a bigger order.

We will now go on to prove more properties of groups, but before that there is a warning. Groups are
inspired by numbers and the notations are very similar. It is not surprising that sometimes you can get
carried away and use properties of integers which are not really true for groups (e.g., commutativity).

For all the proofs for the theorems given below, notice that we will use the already known properties like
closure, associativity, inverse, existence of identity. Then using those theorems we can prove other results.
Now check your proofs for the exercises given in this section above.

This distinction can be made more clear by an analogy which we will use later too. Working with groups
is like playing football. In general, for any activity you use your hands, feet or any other tool. But in case of
football there is a restriction that you only use your feet. Using your feet you develop other skills which can
be used to score a goal.

Our goal would be to prove theorems. Our feet will be the defining properties of groups (closure, asso-
ciativity, inverse, identity). And the intermediate theorems would be like dribbling or kicking. You should
not foul (use properties of integers) to prove a theorem (score a goal). So lets play football. We will use G
to denote a group.

• The inverse of an element is unique.
Proof: Suppose a has two inverses b and c. Then c = (ba)c = b(ac) = b. What properties of groups did
we use in this proof.

• Cancellation laws: Given a, b, x ∈ G, we know ax = bx ⇒ a = b, and also xa = xb ⇒ a = b. These are
called respectively the right and the left cancellation law.

Exercise 2.8. Prove the assertion. What does it say about the rows (or columns) of multiplication table?

• x ∈ G and x−1 have the same order.
Proof: We will show that order of x−1 is at most the order of x, by symmetry this will prove the assertion.
Suppose xn = e. Multiply this equality by x−n and we get x−n = e and hence the order of x−1 is less
than n.

Exercise 2.9. We did not define x−n. What do you think it should be?

For a finite group we have shown that its order is less than the cardinality (also called the order) of the
group. Actually order of an element can be restricted to just the divisors of the order of the group. Look
carefully at the following theorem and proof.

Theorem 2.10. Suppose G is a finite group with n elements (n is the order of the group). If d is the order
of an element x ∈ G then n is a multiple of d (d | n).

Proof. We will prove the theorem in two steps. First, we will show that xn = e ∀x ∈ G. Second, if there is
any m, s.t., xm = e then d divides m. From these two steps the conclusion can be easily inferred.

From the cancellation laws, it is clear that Sx = {xg : g ∈ G} = G as a set. All elements of Sx are
distinct, in G and hence they are just a permutation of elements of G. Taking the product over all elements
of Sx,

Πs∈Sx
s = Πg∈Gxg = xnΠg∈Gg = xnΠs∈Sx

s.
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Using the first and the last step,
e = xn.

So for every element x ∈ G, we know xn = e.
For the second part, suppose m = kd+ r by division. Here k is the quotient and r < d is the remainder.

Then looking at xm,
e = xm = xkd+r = xr.

So there exist r < n, s.t. xr = e. By the definition of order, r = 0. Hence d divides m.
Actually the proof given above is not correct.

Exercise 2.11. Where is the mistake in the proof? Hint: It is in the first part.

ut

If you look at the proof of fact that xn = e, then it was proved using commutativity. So we have
only proved that for a commutative or abelian group the thm. 2.10 is true. It turns out that it is true for
non-commutative groups too. We will prove the full generalization later with a different technique.

2.3 Isomorphism and homomorphism of a group

As discusses above we want to find out what kind of groups are there. Are they all similar. Let us formalize
the notion of similarity now. Clearly if two sets are equal if and only if there is a bijection between them.
But the bijection need not respect the composition. That means the composition properties of two groups
might be completely different even if they have a bijection between them.

Exercise 2.12. Would you say that groups (Z4,+) and (Z+
8 ,×) similar (both have four elements). The

second group is the set of all remainders modulo 8 which are Co-prime to 8.

Hint: Look at the orders of different elements in these groups.
Hence for group similarity, we need to take care of composition too. Two groups are considered same if

they are isomorphic to each other. In other words there exist an isomorphism between the two. To define, a
group G1 is isomorphic to group G2, if there exist a bijection φ : G1 → G2, s.t.,

∀g, h ∈ G1 : φ(g)φ(h) = φ(gh).

The second property takes care of the composition. A related notion is called homomorphism where we
drop the bijection criteria. So G1 is homomorphic to G2 if there exist a map φ : G1 → G2, s.t.,

∀g, h ∈ G1 : φ(g)φ(h) = φ(gh).

Exercise 2.13. Give a homomorphism which is not an isomorphism from a group G to itself.

2.4 Assignment

Exercise 2.14. For any a1, a2, · · · , ak ∈ G, show that expression a1∗a2∗· · ·∗ak is independent of bracketing.

Hint: Show it using induction that all expression are same as a1 ∗ (a2 ∗ (· · · ∗ ak) · · · ).

Exercise 2.15. Prove that the identity is unique for a group.

Exercise 2.16. Which Groups are commutative from the list of groups given in the section 2.1.1?

Exercise 2.17. Prove that G = {a+ b
√

2|a, b ∈ Q} is a group under addition.
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Exercise 2.18. Which of them are groups under addition?

• The set of all rational numbers with absolute value < 1.
• The set of all rational number with absolute value ≥ 1.
• The set of all rational numbers with denominator either 1 or 2 in the reduced form.

Exercise 2.19. Find the order of following,

• 3 in Z5,+.
• 5 in Z7,×.
• Transpositions in permutations. What about product of disjoint transpositions?

Exercise 2.20. Give an example of a finite group where order of an element is different from order of the
group.

Exercise 2.21. If all elements have order 2 for a group G, prove that it is abelian.

Exercise 2.22. Show that if G1 is isomorphic to G2 then G2 is isomorphic to G1.

Exercise 2.23. Show an isomorphism from real numbers with addition to positive real numbers with mul-
tiplication.
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3

Subgroups

We are interested in studying the properties and structure of the group. By properties, we mean the theorems
which can be proven about groups in general. Then any mathematical construct having the group structure
(satisfy closure, associativity etc.) will satisfy those theorems.

Another important task is to understand the structure of group itself. It is deeply related to the properties
of group. It ultimately helps us in figuring out which groups are similar (with respect to isomorphism) and
can we list out all possible kind of groups (not isomorphic to each other).

One of the natural question is that if groups can exist inside a group.

Exercise 3.1. Can we have a subset of group which itself is a group under the group operation? Try to
construct such a set in Z.

3.1 Definition

As the intuition would suggest,

Definition 3.2. A subset H of a group G is called a subgroup if it is not empty, closed under group operation
and has inverses. The notation H ≤ G denotes that H is a subgroup of G.

Note 3.3. The subgroup has the same operation as the original group itself

Exercise 3.4. Why did we not consider associativity, existence of inverse?

Every group G has two trivial subgroups, e and the group G itself. Lets look at few examples of non-trivial
subgroups. Try to prove that each of them is a subgroup.

• nZ, the set of all multiples of n is a subgroup of Integers.
• Under addition, integers (Z) are a subgroup of Rationals (Q) which are a subgroup of Reals (R). Reals

are a subgroup of Complex numbers, C.
• Z+, the set of all positive integers is not a subgroup of Z. Why?
• The set S = {a+ b

√
2 : a, b ∈ Z} is a subgroup of R under addition.

• Center of a group: The center of a group G is the set of elements which commute with every element of
G.

C(G) = {h ∈ G : hg = gh ∀g ∈ G}.
We will show that center is the subgroup. Associativity follows from G and existence of identity is clear.
Suppose h, k ∈ C(G), then for any g ∈ G,

g(hk) = hgk = (hk)g.

Hence C(G) is closed. For the inverse, note that gh = hg is equivalent to h−1gh = g and g = hgh−1.
Hence existence of inverse follows (Why?).



3.1.1 Cyclic groups

We noticed that {e} is a subgroup of every group. Lets try to construct more subgroups. Suppose x is some
element which is not the identity of the group G. If k is the order of x then Sx = {e, x, x2, · · · , xk−1} is a
set with all distinct entries. It is clear from previous discussion of groups that Sx is a subgroup.

Exercise 3.5. Prove that Sx is a subgroup.

While proving the previous exercise, we need to use the fact that k is finite. What happens when k is
infinite? Can we construct a group then? The answer is yes, if we include the inverses too. All these kind of
groups, generated from a single element, are called cyclic groups.

Definition 3.6. A group is called cyclic if it can be generated by a single element. In other words, there
exist an element x ∈ G, s.t., all elements of G come from the set,

< x >= {· · · , x−2, x−1, e, x, x2, · · · }

There are many things to note here:

• For an infinite group, we need to consider inverses explicitly. For a finite group, inverses occur in the
positive powers.

• The group generated by the set S is the group containing all possible elements obtained from S through
composition (assuming associativity, inverses etc.).

• The notation for the group generated by S is < S >.

The structure of cyclic groups seem very simple. You take an element and keep composing. What different
kind of cyclic groups can be there? Look at different examples of cyclic groups of order 4 in figure 3.1.1. The
next theorem shows that all these are isomorphic.

0

2

(1 2 3 4)

321

134

(2 3 4 1)(3 4 1 2)(4 1 2 3)

Rotational Symmetries of 

3 11

1 2

22

4 33 1 2

344

4

1 2

34

Fig. 3.1. Different cyclic groups
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Theorem 3.7. Every finite cyclic group G of order n is isomorphic to Zn.

Proof. Suppose x is a generator for G. It exists by the definition of G. Then since the order is finite, group
G is,

G = {e, x, x2, · · · , xn−1}

Lets look at the obvious bijection φ from Zn to G. The element k is mapped to xk. It is a bijection because,
the inverse maps xk to k. For the above bijection,

φ(j + k) = xj+k mod n = xj ∗ xk = φ(j) ∗ φ(k).

Where first inequality follows from the definition of Zn and second from the fact that xn = 1. This shows
that φ is an isomorphism. Hence Proved. ut

Using the previous theorem and exercise (assignment), we have given complete characterization of cyclic
groups. This loosely means that we can get all the properties of any cyclic group of order n from Zn and an
infinite cyclic group with integers.

This is called a classification of cyclic groups. We would ideally like to give classification of groups
and finding out more properties of groups. These two questions are not independent. We will explore both
simultaneously and progress in one question helps in finding the answer for other.

Exercise 3.8. What are the subgroups of a cyclic group?

3.2 Cosets

The next step in understanding the structure of a group is to partition it using a subgroup. Suppose we are
given a group G and its subgroup H. We will show that G can be partitioned into disjoint sets of equal size
(|H|). This will imply that |G| is always divisible by |H|. Lets define these parts first and then we can prove
the fact given above.

Definition 3.9. Cosets: The left coset (gH) of H with respect to an element g in G is the set of all elements
which can be obtained by multiplying g with an element of H,

gH = {gh : h ∈ H}.

This is called the left coset because g is multiplied on the left. We can similarly define the right cosets
Hg.

Exercise 3.10. How are left and right coset related for commutative groups?

Let us show some properties of these cosets. Remember not to use any illegal property while proving
these. Without loss of generality we will assume that cosets are left. Same properties hold true for right ones
too.

• Every element of G is in at least one coset. H is one of the cosets too.

Proof. Exercise. ut

• The cardinality of all cosets is equal and hence their cardinality is |H|.

Proof. Consider a coset gH and a subgroup H = {h1, h2, · · · , hk}. The elements of the left coset gH are
{gh1, gh2, · · · , ghk}. It is easy to show that any two elements in this set are distinct (why?). Hence all
cosets have cardinality k = |H|. ut

• For any two elements g1, g2 of G either g1H, g2H are completely distinct (disjoint) or completely same
(g1H = g2H).
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Proof. Suppose there is one element common in g1H and g2H (otherwise they are completely distinct).
Say it is g1h1 = g2h2, then,

g1 = g2h2h
−1
1 → ∃ h ∈ H : g1 = g2h.

Now you can prove a simple exercise.

Exercise 3.11. If ∃ h ∈ H : g1 = g2h then show that g1H ⊆ g2H.

But if g1 = g2h then g2 = g1h
−1. This will show from the previous exercise that g2H ⊆ g1H. Hence both

the sets g1H and g2H are the same. ut

Using the properties we have shown that the two columns of the following table are completely the same
or completely distinct.

G/H e g2 · · · gn
e e g2 · · · gn
h2 h2 g2h2 · · · gnh2
...

...
...

. . .
...

hk hk g2hk · · · gnhk
This conclusion is beautifully summarized in Lagrange’s theorem.

3.2.1 Lagrange’s theorem

Using the previous list of properties it is clear that if we look at the distinct cosets of H then they partition
the group G into disjoint parts of equal size.

Exercise 3.12. What is the size of these parts?

Theorem 3.13. Lagrange: Given a group G and a subgroup H of this group, the order of H divided the
order of G.

Proof. The proof is left as an exercise. You should try to do it without looking at the hint given in the next
line.

Hint: From the previous discussion, the |G||H| is just the number of distinct cosets of H. ut

Fig. 3.2. Coset decomposition
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Note 3.14. If the set of left and right cosets coincide the subgroup is called normal. In this case, the set of
cosets actually forms a group, called the quotient group G

H (What is the composition rule?).
This is a great discovery. The statement of Lagrange’s theorem does not do justice to the implications.

We started with an abstract structure with some basic properties like associativity, inverses etc. (group).
The proof of Lagrange’s theorem implies that if we can find a subgroup of the group then the whole group
can be seen as a disjoint partition with all parts related to the subgroup. Notice that it is easy to construct
a cyclic subgroup of a group.

Exercise 3.15. Prove that the order of an element always divides the order of a group. We had proved this
for commutative groups in an earlier lecture.

Exercise 3.16. What does Lagrange’s theorem say about groups with prime order?

Lets look at one application of Lagrange’s theorem in the case of Z×m. We know that this group contains
all the remainders mod m which are coprime (gcd is 1) to m. If m is a prime p then Z×p contains p − 1
elements. This proves the well known Fermat’s little theorem.

Exercise 3.17. Fermat’s little theorem: For a prime p and any number a,

ap−1 = 1 mod p.

Prove this theorem.

3.3 Dihedral group

Till now most of the exercises we have done are for Z and Zn. These groups are commutative. This section
will introduce you to a non-commutative subgroup.

Definition 3.18. A Dihedral group D2n is the group of symmetries of a regular n-gon.

A regular n-gon can be rotated or reflected to get back the n-gon. The group D2n is the group generated
by reflection s and rotation r by the angle 2π

n . Refer to figure 3.3 for all the symmetries of a pentagon.
For an n− gon there are n rotations possible. The set of rotations form a cyclic group of order n.

Exercise 3.19. What is the inverse of rotation r. Convince yourself that set of rotations form a cyclic group.

On the other hand reflection is the inverse of itself. Hence it is an element of order 2. From the figure
you can guess that there will be 2n symmetries of the form sirj , where i ranges in {0, 1} and j is an element
from {0, 1, · · · , n− 1}. Using this notation, rs means we apply s first and then r.

Exercise 3.20. Convince yourself that rs 6= sr.

Notice that we have given a description of 2n elements of the dihedral group D2n. How can we be sure
that there are no more elements generated by r and s. What about rsrs?

Exercise 3.21. Show that rs = sr−1.

This relation tell us how to interchange r and s in any expression involving both. This way we can convert
any element of the group generated by r and s to be of the form sirj with i and j ranging appropriately.

The above discussion shows the important properties (defining properties) of dihedral group.

• An element of order 2, s.
• An element of order n, r.
• The commutation relation rs = sr−1.
• s 6= ri for any i.

Any group which is generated by two elements with the above mentioned properties will be isomorphic
to D2n.
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Fig. 3.3. Symmetries of a pentagon

3.4 Assignment

Exercise 3.22. List all possible subgroups of Z6 under addition.

Exercise 3.23. The kernel of a homomorphism φ : G→ L is the subset of G which maps to identity of L.
Hence,

Ker(φ) = {g ∈ G : φ(g) = eL}.

Similarly, the image of φ are the elements of L which have some element mapped to them through φ.

Img(G) = {h ∈ L : ∃g ∈ G for which φ(g) = h.}

show that Img(G) and Ker(G) are subgroups.

Exercise 3.24. Show that a subset H is a subgroup of G if it is non-empty and ∀x, y ∈ H : xy−1 ∈ H.

Note 3.25. Because H is a subset, the set of properties we need to check are much less.

Exercise 3.26. Show that Zn is cyclic under addition. Give some examples of cyclic subgroups and some
examples of non-cyclic subgroups in Z+

n under multiplication.

Exercise 3.27. Show that all cyclic groups are commutative (abelian).

Exercise 3.28. Show that every cyclic group with infinite order (having infinite elements) is isomorphic to
Z under addition.

Hint: Look for the obvious bijection between the group and Z. Show that it is an isomorphism.

Exercise 3.29. Find the order of every element of group Zp where p is a prime.

Exercise 3.30. Find the left cosets of 3Z in group Z.
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Exercise 3.31. If order of a group G is prime p then show that it is isomorphic to Zp.

Exercise 3.32. Euler’s theorem: For a number m, say φ(m) is the number of positive elements coprime to
m and less than m. For any a which is co-prime to m,

aφ(m) = 1 mod m.

Prove this theorem.

Exercise 3.33. Show that there always exist a cyclic subgroup of any finite group G.

Exercise 3.34. Show that the subgroup of a cyclic group is cyclic.
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4

Orbits

In the beginning of the course we asked a question. How many different necklaces can we form using 2
black beads and 10 white beads? In the question, the numbers 2 and 10 are arbitrarily chosen. To answer
this question in a meaningful way, we need to construct a strategy or theorem which will answer the above
question for any such numbers. But to understand the question better, lets ask a simpler question.

Exercise 4.1. How many different necklaces can be formed using 2 white and 2 black beads?

Lets look at the question in detail. The first guess for the question would be 4! = 24, the number of
ways we can permute the four beads. But all these permutations need not be different. What do we mean
by different necklaces? It might happen that two different permutations (σ1 and σ2) might be the same in
the sense that σ1 can be obtained from σ2 using rotation. Look at figure 4 for one such example.

Fig. 4.1. Two permutations giving the same necklace

Using some brute force now, we can come up with all possible different necklaces for 2 white and 2 black
beads (figure 4).

Fig. 4.2. Possible different necklaces with 2 white and 2 black beads

You can convince yourself that the question is much harder if we take bigger numbers. What should we
do? When are two necklaces equivalent?

Two necklaces are equivalent if we can obtain one by applying a symmetry to other necklace (like rotation
or reflection). We know from discussions in previous classes that the symmetries form the dihedral group,
D2n. The strategy would be to develop a general framework for groups to answer question about distinct
necklaces.



4.1 Group action

The first thing to notice in the necklace problem is that there are two different objects of interest. One is the
set of necklaces (set of all permutations of the necklaces) and other is the set of symmetries. A symmetry
can be applied to a necklace to obtain another necklace. Lets make this action abstract.

Abstractly, given a group G and a set A, every element g of G acts on set A. That means for every
element g there is a function from A to A which is called its action on G. For the sake of brevity, we will
denote the function corresponding to the element g ∈ G with g itself. Hence the value of a ∈ A after action
of g will be called g(a).

Exercise 4.2. What is the group and what is the set for the necklace problem?

Note 4.3. It is NOT the set of distinct necklaces.
Lets look at the formal definition.

Definition 4.4. Given a group G and a set A, a group action from G to A assigns a function g : A → A
for every element g of group G. A valid group action satisfies the following properties.

• Identity takes any element a ∈ A to a itself, i.e., e(a) = a for every a ∈ A.
• For any two group elements g1, g2 ∈ G, their functions are consistent with the group composition,

g1(g2(a)) = (g1g2)(a).

Using this definition and group structure of G, it can be shown that action of g is a permutation on the
elements of A.

This gives us another representation of group elements. For any group action on A of size m, we have a
permutation representation for any element g ∈ G in terms of a permutation on m elements. In the following
sections we will keep this representation in mind.

Note 4.5. Actually a slightly stronger theorem holds. It is called Cayley’s theorem and is given below. We
will not show the proof of this theorem.

Theorem 4.6. Cayley’s theorem: Every group of order n is isomorphic to some subgroup of Sn.

4.2 Orbits

Suppose we are given action of group G on a set A. Lets define a relation between the elements of A. If
∃ g : g(x) = y then we will say that x, y are related (x ∼ y). We can easily prove that this relation is
equivalence relation.

• Reflexive: Why?
• Symmetric: Suppose x ∼ y because g(x) = y. Then consider x = ex = (g−1g)(x) = g−1y, implying y ∼ x.
• Transitive: Show it as an exercise.

Hence this equivalence relation will partition the set A into distinct equivalence classes. The equivalence
class corresponding to x ∈ A is the orbit (G(x)) of element x. In other words,

G(x) = {g(x) : g ∈ G}.

Now we will look at two counting questions,

1. What is the size of these orbits?
2. How many distinct orbits are there?
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Why are we interested in these questions. Let us look at this concept from the example of necklaces. If a
necklace x can be obtained from another necklace y using a symmetry then they are related (in the necklace
case indistinguishable).

Exercise 4.7. Convince yourself that the number of distinct necklaces is the same as the number of distinct
orbits (equivalence classes) under the dihedral group D2n.

We will answer both the counting questions under the general group-theoretic framework. As a special
case, this will solve the necklace problem.

4.2.1 stabilizers

Remember that the orbit of x ∈ A under the action of G can be defined as,

G(x) = {g(x) : g ∈ G}.

If every g ∈ G took x to a different element, the size of the orbit would be |G|. But this is too much to
expect. If we consider any example, there will be lots of g ∈ G which will take x to a single element y. Lets
define this set as G(x,y),

G(x, y) = {g ∈ G : g(x) = y}.

Exercise 4.8. Does the set G(x, y) form a subgroup of G? Under what condition will it form a subgroup?

The answer to the previous exercise is when x = y. The set Gx := G(x, x) is called the stabilizer of x,

Gx = {g ∈ G : g(x) = x}.

Exercise 4.9. If you were not able to solve the previous exercise, prove that Gx is a subgroup of G.

Once we have the subgroup Gx, the natural question to ask is, what are the cosets? This is where we get
lucky. Suppose y is an element of the orbit G(x). So there exist an h ∈ G, s.t., h(x) = y. Then G(x, y) is
precisely the coset hGx.

Lemma 4.10. Given a y ∈ A, s.t., h(x) = y. The coset hGx is same as the set G(x, y).

Proof.⇒: An element of hGx is of the form hg, g ∈ Gx. Then hg(x) = h(x) = y. So hGx ⊆ G(x, y).
⇐: Suppose g ∈ G(x, y), i.e., g(x) = y. Then show that,

Exercise 4.11. h−1g ∈ Gx

But h−1g ∈ Gx implies g ∈ hGx.

Exercise 4.12. Show the above implication. Be careful, It is not just the same as multiplying by h on both
sides.

From the previous exercise G(x, y) ⊆ Gx. ut

Hence, for every element y in the orbit G(x), there is a coset. It is an easy exercise to convince yourself
that every coset will correspond to a single element in the orbit G(x). So the number of elements in the orbit
is equal to the number of cosets. But we know that the number of cosets can be calculated from Lagrange’s
theorem. Hence,

|G| = |Gx||G(x)|.

Note 4.13. Gx is a subset of G, but G(x) ⊆ A. The equation works because we show a one to one relation
between G(x) (orbit) and the cosets.
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4.2.2 Burnside’s lemma

We now know the size of the orbit. Given an element x with stabilizer Gx, the number of elements in its

orbit is |G|
|Gx| . Can this help us in counting the number of distinct orbits.

Lets give every element on A a weight of 1
|G(x)| . The number of distinct orbits is now the sum of weights

of all elements of A.

Number of distinct orbits =
∑
x∈A

1

|G(x)|
=

1

|G|
∑
x∈A
|Gx|.

Lets concentrate on the summation. The total summation is equal to the number of pairs (g ∈ G, x ∈ A),
s.t., g(x) = x. Suppose we make a matrix with rows indexed by elements of G and columns indexed by
elements of A. The entry (g, x) is one if g(x) = x and 0 otherwise.

x1 x2 · · · x|A|
g1 0 1 · · · 1
g2 0 0 · · · 1
...

...
...

. . .
...

g|G| 1 0 · · · 0

Then
∑
x |G(x)| is the number of 1’s in the matrix above. Each term in the summation, |Gx| is the

number of 1’s in the column corresponding to x. We can count the number of 1’s in the matrix by taking
the sum row-wise too. Suppose, S(g) is set of elements of A fixed by g.

S(g) = {x : g(x) = x, x ∈ A}.

Using S(g) we get the orbit-counting (Burnside’s) lemma.

Lemma 4.14. Burnside’s lemma (Orbit-counting): Given a group action of G over A. The number of distinct
orbits can be written as,

Number of distinct orbits =
1

|G|
∑
g∈G
|S(g)|.

Note 4.15. The summation is now over G instead of A.
One natural question you might ask is, How did this benefit us? Previously we were summing over all

possible x ∈ A and now we are summing up over all g ∈ G. The reason is, in general, the size G will be much
smaller than size of A.

Lets look at an example where Orbit-counting lemma will help us in answering the question about
necklaces. Try to solve this exercise yourself first and later you can look at the solution given below.

Exercise 4.16. How many necklaces can be formed with 2 black and 6 white beads?

Arrange the beads on the vertices of a regular 8-gon. Since the necklaces are obtained by fixing the
position of 2 black beads, there are 28 elements in A. The symmetry group is D16 with 16 elements.

For different elements of G we can calculate the number of elements fixed by it.

• Identity e: Fixes 28 elements.
• Out of 7 other rotations, only one of them fixes 4 elements. What is the angle of that rotation? Rest do

not fix anything.
• All reflections fix exactly 4 elements. It is easy to see by looking at the cycle structure of the permutation.

All beads of the same color should fall in the same cycle.
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So by Orbit-counting lemma,

Number of distinct orbits =
1

16
(28 + 4 + 8× 4) = 4.

Exercise 4.17. What are the four configurations? Can you characterize them?

For other examples of application of Burnside’s lemma, please look at section 21.4 of Norman Biggs book.
There is a nice example in Peter Cameron’s notes on Group Theory too (section 1.3).

4.3 Group representations (advanced)

We looked at the permutation representation of every group. There is a matrix representation of every group
too. The study of that representation is called the group representation theory. Group representation theory
is one of the main tools to understand the structure of a group. We will only give a very basic idea of this
field. Interested students can look at book Algebra by Artin.

Define GLn to be the group of invertible matrices of size n× n with complex entries. We can also think
of these matrices as linear operators over Cn.

A linear representation (matrix representation) is a homomorphism from group G to the group GLn (say
R : G → GLn). That means, we map every element of group G to an invertible matrix, s.t., it obeys the
group composition,

R(gh) = R(g)R(h).

If there is a subspace of Cn which is fixed by every group element, then the representation is reducible.
In other words, for an irreducible representation, there is NO subspace which is fixed by every element of
group G.

Exercise 4.18. What does it mean that the subspace is fixed?

It can be shown that every representation can be broken down into irreducible representations. Another
quantity of interest is the character. The character of the representation is a function χ : G→ C defined by
χ(g) = trace(R(g)).

The characters of irreducible representations are orthonormal to each other and satisfy various other
nice properties. Many theorems in group theory are derived by studying the characters of the group. Again,
interested students can find more information in the book Algebra by Artin.

4.4 Assignment

Exercise 4.19. Show that action of dihedral group on the set of necklaces is a group action.

Exercise 4.20. Show that G is isomorphic to a subgroup of S|A|. Remember that Sn is the group of per-
mutations of [n].

Hint: First show that action of g on A is a permutation and then use the consistency of group action
with the group composition.

Exercise 4.21. Suppose we want to find the number of necklaces with m black and n white beads. What is
the size of G and what is the size of A in terms of m,n?

Exercise 4.22. Prove that the average number of elements fixed by an element of group G under group
action is an integer.

Exercise 4.23. Prove that GLn is a group. What composition rule did you use?
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Exercise 4.24. Biggs: Let G be a group of permutations of set A. If u, v are two elements in the same orbit
of G, show that |Gu| = |Gv|.

Exercise 4.25. Biggs: Let A denote the set of corners of the cube and let G denote the group of permutations
of A which correspond to rotation of the cube. Show that,

• G has just one orbit.
• For any corner x, |Gx| = 3.
• |G| = 24

Exercise 4.26. Biggs: Suppose you manufacture an identity card by punching two holes in an 3 × 3 grid.
How many distinct cards can you produce. Look at the figure given below.

Fig. 4.3. Different identity cards with circles showing the holes.

Hint: The group to consider here is D8.
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5

Quotient group

We have seen that the cosets of a subgroup partition the entire group into disjoint parts. Every part has
the same size and hence Lagrange’s theorem follows. If you are not comfortable with cosets or Lagrange’s
theorem, please refer to earlier notes and refresh these concepts.

So we have information about the size of the cosets and the number of them. But we lack the understanding
of their structure and relations between them. In this lecture, the concept of normal subgroups will be
introduced and we will form a group of cosets themselves !!

5.1 Normal subgroup

Suppose we are given two elements g, n from a group G. The conjugate of n by g is the group element gng−1.

Exercise 5.1. When is the conjugate of n equal to itself?

Clearly the conjugate of n by g is n itself iff n and g commute.
We can similarly define the conjugate of a set N ⊆ G by g,

gNg−1 := {gng−1 : n ∈ N}.

Definition 5.2. Normal subgroup: A subgroup N of G is normal if for every element g in G, the conjugate
of N is N itself.

gNg−1 = N ∀g ∈ G.

We noticed that gng−1 = n iff g, n commute with each other.

Exercise 5.3. When is gNg−1 = N ?

In this case the left and right cosets are the same for any element g with respect to subgroup N . Hence,
a subgroup is normal if its left and right cosets coincide.

Exercise 5.4. Show that following are equivalent. So you need to show that each of them applies any other.

1. N is a normal subgroup.
2. The set S = {g : gN = Ng} is G itself.
3. For all elements g ∈ G, gNg−1 ⊆ N .

Hint: Instead of showing all 2×
(
3
2

)
implications, you can show 1)⇒ 2)⇒ 3)⇒ 1.



5.2 Quotient group

We have introduced the concept of normal subgroups without really emphasizing why it is defined. Lets
move to our original question. What can be said about the set of cosets, do they form a group?

Suppose G is a group and H is a subgroup. Denote by S, the set of cosets of G with respect to H. For
S to be a group it needs a law of composition. The most natural composition rule which comes to mind is,

(gH)(kH) = (gk)H.

Here gH and kH represent two different cosets. The problem with this definition is that it might not
be well-defined. It might happen that g′ ∈ gH and k′ ∈ kH when multiplied give a totally different coset
(g′k′)H then (gk)H.

Exercise 5.5. Show that this operation is well-defined for commutative (abelian) groups.

What about the general groups? Here comes the normal subgroup to the rescue.

Theorem 5.6. Suppose G is a group and H is its subgroup, the operation,

(gH)(kH) = (gk)H,

is well defined if and only if H is a normal subgroup.

Note 5.7. Every subgroup of a commutative group is normal.

Proof.⇒): We need to show that if the operation is well defined then ghg−1 ∈ H for every g ∈ G, h ∈ H.
Consider the multiplication of H with g−1H. Since e, h ∈ H, we know eH = hH. Since the multiplication is
well defined,

(eg−1)H = (eH)(g−1H) = (hH)(g−1H) = (hg−1)H ⇒ g−1H = (hg−1)H.

Again using the fact that e ∈ H, hg−1 ∈ g−1H. This implies hg−1 = g−1h′ ⇒ ghg−1 = h′ for some
h′ ∈ H.
⇐): Suppose N is a normal subgroup. Given g′ = gn and k′ = kn′, where g, g′, k, k′ ∈ G and n, n′ ∈ N ,

we need to show that (gk)N = (g′k′)N .

(g′k′)N = (gnkn′)N.

Exercise 5.8. Show that there exist m ∈ N , s.t., nk = km. Hence complete the proof.

ut

With this composition rule we can easily prove that the set of cosets form a group (exercise).

Definition 5.9. Given a group G and a normal subgroup N , the group of cosets formed is known as the
quotient group and is denoted by G

N .

Using Lagrange’s theorem,

Theorem 5.10. Given a group G and a normal subgroup N ,

|G| = |N ||G
N
|
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5.3 Relationship between quotient group and homomorphisms

Let us revisit the concept of homomorphisms between groups. The homomorphism between two groups G
and H is a mapping φ : G→ H that preserves composition.

φ(gg′) = φ(g)φ(g′)

For every homomorphism φ we can define two important sets.

• Image: The set of all elements h of H, s.t., there exists g ∈ G for which φ(g) = h.

Img(φ) = {h ∈ H : ∃g ∈ G φ(g) = h}

Generally, you can restrict your attention to Img(φ) instead of the entire H.
• Kernel: The set of all elements of G which are mapped to identity in H.

Ker(φ) = {g ∈ G : φ(G) = eH}

Notice how we have used the subscript to differentiate between the identity of G and H.

Note 5.11. Img(φ) is a subset of H and Ker(φ) is a subset of G.

Exercise 5.12. Prove that Img(φ) and Ker(phi) form a group under composition with respect to H and
G respectively.

Exercise 5.13. Show that Ker(φ) is a normal subgroup.

There is a beautiful relation between the quotient groups and homomorphisms. We know that Ker(φ)
is the set of elements of G which map to identity. What do the cosets of Ker(φ) represent. Lets take
two elements g, h of a coset gKer(φ). Hence h = gk where φ(k) = eH . Then by the composition rule of
homomorphism φ(g) = φ(h).

Exercise 5.14. Prove that φ(g) = φ(h) if and only if g and h belong to the same coset with respect to
Ker(φ).

The set of elements of G which map to the same element in H are called the fibers of φ. The previous
exercise tell us that fibers are essentially the cosets with respect to Ker(φ) (the quotient group).

The fibers are mapped to some element in Img(φ) by φ. Hence there is a one to one relationship between
the quotient group G

Ker(φ) and Img(φ). Actually the relation is much stronger.

It is an easy exercise to show that the mapping between quotient group G
Ker(φ) and Img(φ) is an isomor-

phism.

Exercise 5.15. Prove that the above mapping is an isomorphism.

Again applying the Lagrange’s theorem,

|G| = |Ker(φ)||Img(φ)|.

The figure 5.11 depict that every element of quotient group is mapped to one element of image of φ. Now
we know that this mapping is well-behaved with respect to composition too.

φ((gKer(φ))(hKer(φ))) = φ(gKer(φ))φ(hKer(φ))

There is an abuse of notation which highlights the main point also. The notation φ(gKer(φ)) represents
the value of φ on any element of gKer(φ). We know that they all give the same value. The study of
homomorphism is basically the study of quotient group. The study of quotient group can be done by choosing
a representative for every coset and doing the computation over it (instead of the cosets).

We have shown that Ker(φ) is normal. It can also be shown that any normal subgroup N is a kernel of
some homomorphism φ (exercise).
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G

H

The rectangles are the cosets

For a homomorphism from G to H

Fig. 5.1. Relationship between the quotient group and the image of homomorphism

5.4 Assignment

Exercise 5.16. Given a subgroup H of G, two elements x, y ∈ G are related (x ∼ y) if x−1y ∈ H. Prove
that this relation is an equivalence relation. What are the equivalence classes of this relation?

Exercise 5.17. Given a group G and a normal subgroup N . Say the set of cosets is called S and has
composition operation (gH)(kH) = (gk)H. Show that,

• Identity exists in this set.
• Inverses exist in this set.
• Associativity is satisfied.

Since Closure is obvious we get that S is a group with respect to the above mentioned composition rule.

Exercise 5.18. Given a group G and a subgroup N as a set. Write a program to find if N is normal or not.
Assume that you are given a function mult(x, y), which can compute the binary operation of the group G
between any two elements x, y of G.

Exercise 5.19. What is the quotient group of D2n with respect to the subgroup generated by reflection?

Exercise 5.20. Suppose G is an abelian group and H is a subgroup. Show that G
H is abelian.

Exercise 5.21. Given N is a normal subgroup, prove that gk(N) = (gN)k.

Exercise 5.22. Suppose N is normal in G, show that for a subgroup H, H ∩N is a normal subgroup in H.

Exercise 5.23. Show that a subgroup N is normal in G iff it is the kernel of a homomorphism from G to
some group H.
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6

Rings

We have shown that Zn is a group under addition and Z+
n is a group under multiplication (set of all

numbers co-prime to n in Zn). Till now, the two operations + and × have been treated differently. But
from our experience with integers and even matrices, these operations satisfy properties like “distribution”
(a(b+ c) = ab+ ac).

Hence, after success in defining an abstract structure with one operation (group), now we define another
abstract structure with 2 operations. The first question is, what should be the defining properties of this
new abstract structure. We will be inspired by integers again and define the concept of Rings.

6.1 Rings

Consider two operations + and × in a set R.

Definition 6.1. The set R with the two operations + and × is a ring, if,

• R is a commutative group under +.
• R is associative, closed and has an identity with respect to the operation ×.
• The two operations + and × follow the distributive law, i.e.,

a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

Note 6.2. We will always assume that the multiplicative identity is different from additive identity. The
additive identity will be denoted by 0 and multiplicative identity by 1. For brevity, we will denote a × b as
ab.

Exercise 6.3. Are the two conditions under the distributive law same?

Exercise 6.4. Why did we assume commutativity under addition for a ring?

There are many examples of rings, many of these sets we have encountered before.

• The sets Z,Q,R,C are rings with addition and multiplication.
• The set of integers modulo m, Zm, is a ring with addition and multiplication.
• The set of 2× 2 matrices with integer entries is a ring. Actually if R is a ring then set of 2× 2 matrices

with entries in R is also a ring.

Another ring which will be of our particular interest is the ring of polynomials. The set R[x] is the set of
all polynomials with coefficients from ring R. If the multiplication in R is commutative then R[x] is also a
commutative ring.

Note 6.5. The addition and multiplication of polynomials is defined in the same way as in regular polynomials.



Exercise 6.6. Check that you can define these operations on polynomials with entries from a ring R. Why
do we need that multiplication is commutative in the original ring?

Hence we have polynomial rings Z[x],Q[x],R[x],C[x] having commutative multiplication.

6.1.1 Units of a ring

The ring is not a group with respect to multiplication. That is because inverses need not exist in a ring (e.g.,
integers). The elements of rings which have inverses inside the ring with respect to multiplication are called
units or invertible elements.

The set of units for Z are just ±1.

Exercise 6.7. Prove that the set of units form a group under multiplication.

6.1.2 Characteristic of a ring

Rings have two identities e× and e+ (we will denote them by 1 and 0 respectively). For a ring an important
criteria is the additive group generated by 1. The elements of that group are 1, 1 + 1, 1 + 1 + 1 and so on.
The smallest number of times we need to sum 1 to get 0 is called the characteristic of the ring.

For some cases, like reals, the sum never reaches the additive identity 0. In these cases we say that the
characteristic is zero.

Exercise 6.8. Prove that 1× 0 = 0 in a ring.

6.1.3 Homomorphism for a ring

We have already defined the homomorphism for a group. How should we define the homomorphism for a
ring?

Exercise 6.9. Try to come up with a definition of ring homomorphism. Remember that the mapping should
be well behaved with respect to both the operators.

When not clear from the context, we specify if it is a group homomorphism or a ring isomorphism.
We can define the kernel of a homomorphism φ : R → S from a ring R to ring S as the set of elements

of R which map to the additive identity 0 of S. A bijective homomorphism is called an isomorphism.
We showed in previous lectures that the kernel of a group homomorphism is a normal subgroup. What

about the kernel of a ring homomorphism? For this, the concept of ideals will be defined.

6.1.4 Ideal

The ring R is a group under addition. A subgroup I of R under addition is called an ideal if

∀x ∈ I, r ∈ R : xr, rx ∈ I

For example, the set of all elements divisible by n is an ideal in Z.

Exercise 6.10. Show that nZ is an ideal of Z.

Ideal is similar to the normal subgroup, but belongs to a ring. Suppose I is an ideal. Then we can define
the set of cosets of I with respect to R as R

I . We denote the elements of the set by r + I.

We know that R
I is a group (why?), but it can be shown that it is a ring under the following operations

too.
(r + I) + (S + I) = (r + s) + I (r + I)× (s+ I) = (rs) + I
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Exercise 6.11. Show that the kernel of a ring homomorphism is an ideal.

Kernel of a any ring homomorphism is an ideal and every ideal can be viewed this way. We can define
quotient ring using ideals as we defined quotient group using normal subgroup. It turns out,

Theorem 6.12. Given a homomorphism φ : R→ S,

R

Ker(φ)
∼= Img(φ)

Given a set S ⊆ I, we can always come up with the ideal generated by the set. Suppose the multiplication
is commutative, then

I = {r1x1 + r2x2 + · · ·+ rnxn : ∀i ri ∈ R, xi ∈ S},

is the ideal generated by S.

Exercise 6.13. Prove that it is an ideal.

6.2 Chinese remainder theorem

One of the most important ways to create a big ring using two small rings is called direct product. Suppose
the two given rings are R and S. The direct product T = R × S is a ring with first element from R and
second element from S.

T = {(r, s) : r ∈ R and s ∈ S}

The two binary operations in ring T are defined by taking the operations component-wise in R and S.

(r1, s1) + (r2, s2) = (r1 + r2, s1 + s2) and (r1, s1)(r2, s2) = (r1r2, s1s2)

The motivation for Chinese remainder theorem is to break the ring Zm into smaller parts (rings modulo
smaller numbers).

Exercise 6.14. Come up with an isomorphism between Z6 and Z2 × Z3.

It might seem that we can break Zmn to Zm × Zn.

Exercise 6.15. Show that there is no isomorphism between Z4 and Z2 × Z2.

It turns out, in the last exercise, 2 and 3 being co-prime to each other is important. We need to define
when two ideals are “co-prime” to each other.

Definition 6.16. The ideals A and B are said to be comaximal if A+ B = R. Here A+ B = {a+ b : a ∈
A and b ∈ B}.

The definition of comaximal basically says that there exist x ∈ A and y ∈ B, s.t., x+ y = 1.

Note 6.17. Similarly we can define AB to be the ideal with finite sums of kind ab where a ∈ A and b ∈ B.

Exercise 6.18. Notice that S = {ab : a ∈ A, b ∈ B} need not be an ideal. Show that AB as defined above
is an ideal.

Exercise 6.19. If A1, A2, · · · , Ak are pairwise comaximal then show that A1 and A2 · · ·Ak are comaximal
too.

With all these definitions (direct product, comaximal) we are ready to state the Chinese remaindering
theorem. We will assume that the ring is commutative.
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Theorem 6.20. Chinese remainder theorem (CRT): Let A1, A2, · · · , Ak be ideals in ring R. The natural
map which takes r ∈ R to (r+A1, r+A2, · · · , r+Ak) ∈ R

A1
× R

A2
× · · · × R

Ak
is a ring homomorphism. If all

pairs Ai, Aj are comaximal then the homomorphism is actually surjective (onto) and,

R

A1A2 · · ·Ak
∼=

R

A1
× R

A2
× · · · × R

Ak
.

Proof. We will first show this for k = 2 and then it can be extended by induction (the exercise that A1 and
A2 · · ·Ak are comaximal will prove it).

The proof can be broken down into three parts.

1. The map φ which takes r to r +A1, r +A2 is a homomorphism.
2. The kernel φ is A1A2 · · ·Ak.
3. The image is R

A1
× R

A2
× · · · × R

Ak
. In other words the map φ is onto(surjective).

The first part is an exercise. It follows from the fact that the individual maps (δi : R → R
Ai

) which take
r to r +Ai are homomorphisms.

The kernel for this individual maps are Ai’s and hence for the combined map φ, it is A1∩A2. The second
part of the proof requires us to prove that if A1, A2 are comaximal then A1 ∩A2 = A1A2.

Suppose A1 and A2 are comaximal. Hence, there exist x ∈ A1, y ∈ A2 for which x + y = 1. Even
without the comaximal condition A1A2 ⊆ A1 ∩ A2. For the opposite direction, say c ∈ A1 ∩ A2, then
c = c1 = cx+ cy ∈ A1A2 (there exist x ∈ A1, y ∈ A2 for which x+ y = 1). Hence A1 ∩A2 = A1A2.

Now we only need to prove the third part, to show that the map φ : r → (r + A1, r + A2) is surjective.
Since x+ y = 1, φ(x) = (0, 1) and φ(y) = (1, 0). For any element (r1 +A1, r2 +A2) of R

A1
× R
A2

, we can prove
φ(r2x+ r1y) = (r1 +A1, r2 +A2). Hence φ is surjective.

φ(r2x+ r1y) = φ(r2x) + φ(r1y) = (A1, r2 +A2) + (r1 +A1, A2) = (r1 +A1, r2 +A2).

ut

We will see various applications of Chinese remaindering theorem throughout this course. The most
important one is, given a number n = pa11 · · · parr ,

Zn ∼= Zpa1
1
Zpa2

2
· · ·Zpar

r
.

The proof is left as an exercise.
This isomorphism and its proof will enable us to answer one of the questions posted earlier. Suppose

we need to find a number r which leaves remainder r1 modulo n1 and remainder r2 modulo n2. Chinese
remainder theorem tells us that such a r always exists if n1 and n2 are co-prime to each other. Through the
proof of CRT,

r = r1n2(n−12 mod n1) + r2n1(n−11 mod n2).

Exercise 6.21. Check that the above solution works.

The same can be generalized to more than 2 numbers. How (try to give the explicit formula)?
Now, we will consider two abstract structures which are specialization of rings, integral domains and

fields.

6.3 Integral domain

Our main motivation was to study integers. We know that integers are rings but they are not fields. We also
saw (through exercise) that integers are more special than rings. The next abstract structure is very close to
integers and is called integral domain.

An integral domain is a commutative ring (multiplication is commutative) where product of two non-zero
elements is also non-zero. In other words, if ab = 0 then either a = 0 or b = 0 or both.
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Exercise 6.22. Give some examples of an integral domain. Give some examples of rings which are not
integral domains.

We said that integral domain is closer to integers than rings. The first thing to notice is that integral
domains have cancellation property.

Exercise 6.23. If ab = ac in an integral domain, then either a = 0 or b = c.

Now we will see that the properties of divisibility, primes etc. can be defined for integral domains.
Given two elements a, b ∈ R, we say that a divides b (b is a multiple of a) if there exist an x ∈ R, s.t.,

ax = b.

Exercise 6.24. If a divides b and b divides a then they are called associates. Show,

• Being associates is an equivalence relation.
• a and b are associates iff a = ub where u is a unit.

You can guess (from the example of integers), the numbers 0 and units (±1) are not relevant for divisibility.
A non-zero non-unit x is irreducible if it can’t be expressed as a product of two non-zero non-units. A non-zero
non-unit x is prime if whenever x divides ab, it divides either a or b.

Notice that for integers the definition of irreducible and prime is the same. But this need not be true in
general for integral domain. For examples, look at any standard text.

Exercise 6.25. What is the problem with defining divisibility in ring?

6.4 Fields

If you look at the definition of rings, it seems we were a bit unfair towards multiplication. R was a commutative
group under addition but for multiplication the properties were very relaxed (no inverses, no commutativity).
Field is the abstract structure where the set is almost a commutative group under multiplication.

Definition 6.26. The set F with the two operations + and × is a field, if,

• F is a commutative group under +.
• F − {0} is a commutative group under × (it has inverses).
• The two operations + and × follow the distributive law, i.e.,

a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

Exercise 6.27. Why are we excluding the identity of addition when the multiplicative group is defined?

As you can see Field has the strongest structure (most properties) among the things (groups, rings etc..)
we have studied. Hence many theorems can be proven using Fields. Fields is one of the most important
abstract structure for computer scientists.

Note 6.28. The notion of divisibility etc. are trivial in fields.
Let us look at some of the examples of fields.

• Z is NOT a field.
• Q, R and C are fields.
• Zm is a field iff m is a . Ex: Fill in the blank.

The last example is of fields which have finite size. These fields are called finite fields and will be of great
interest to us.
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6.5 The chain of abstract structures (advanced)

We have studied three different abstract structures this week, ring, integral domain and fields. Actually there
are a lot of abstract structures which can arise in between rings and fields. They are defined by the properties
which have been fundamental in the study of number theory. Take a look at the definition of all of these
structures and the relation (order) between the properties.

Exercise 6.29. For how many of them can you guess the defining properties?

Rings ⊃ Commutative Rings ⊃ Integral domain ⊃ Unique factorization domain ⊃ Principal ideal domain
⊃ Euclidean domain ⊃ Field

This list is taken from Wikipedia. You can interpret this chain of inclusion as the fact that Euclidean gcd
algorithm (Euclidean domain) implies the every any number of the form ax+ by can be written as dgcd(x, y)
(principal ideal domain). And principal ideal domain implies unique factorization. Then unique factorization
implies, ab = ac ⇒ b = c assuming a 6= 0.

Exercise 6.30. Prove all the above assertions.

6.6 Assignment

Exercise 6.31. Give a rule that is satisfied by Integers but need not be satisfied by rings in general.

Exercise 6.32. Find the set of units in the ring Z8.

Exercise 6.33. If all the ideals in the ring can be generated by a single element then it is called a principal
ideal domain. Show that Z is a principal ideal domain.

Exercise 6.34. Show that if ab = 0 for a, b in a field F then show that either a = 0 or b = 0.

Exercise 6.35. What are the units of a field?

Exercise 6.36. Show that a finite integral domain is a field.

Exercise 6.37. Show that the characteristic of a finite field is always a prime.

Exercise 6.38. Find a number n which leaves remainder 23 with 31, 2 with 37 and 61 with 73.

Exercise 6.39. Given a number n = pa11 · · · parr , show that,

Zn ∼= Zpa1
1
Zpa2

2
· · ·Zpar

r
.

Where ∼= denotes that two rings are isomorphic.

Exercise 6.40. Find a number n which leaves remainder 3 when divided by 33 and 62 when divided by 81.

Hint: Trick question.

Exercise 6.41. Suppose φ(n) is the number of elements co-prime to n. Prove that if m and n are co-prime,
then φ(mn) = φ(m)φ(n).

Hint: Chinese remainder theorem.

Exercise 6.42. Show that mZ and nZ are comaximal in Z.
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7

Polynomials

You have seen polynomials many a times till now. The purpose of this lecture is to give a formal treatment
to constructing polynomials and the rules over them. We will re derive many properties of polynomials with
the only assumption that the coefficients arise from a ring or a field.

We are used to thinking of a polynomial (like 4x2 + 2x+ 6) as an expression of coefficients (in Z,R etc.)
and variables (x, y etc.). Mostly the purpose is to solve equations and find out the value of the variable
or indeterminate. But the polynomials are useful not just to figure out the value of the variable but as
a structure itself. The values x, x2, · · · should be thought of as placeholder to signify the position of the
coefficients. Using this view lets define a formal polynomial.

7.1 Polynomials over a ring

A polynomial over a ring R is a formal sum anx
n + · · · + a1x + a0, where the coefficients come from the

ring R. The set of all polynomials (in one variable) over a ring R are denoted by R[x]. The degree of the
polynomial is the highest power of x with a non-zero coefficient.

We can define the addition and multiplication over polynomials (in R[x]) so as to match the definitions
learned till now. Given two polynomials a(x) = anx

n + · · ·+ a1x+ a0 and b(x) = bnx
n + · · ·+ b1x+ b0, their

sum is defined as,
a(x) + b(x) = (an + bn)xn + · · ·+ (a1 + b1)x+ (a0 + b0).

If the degree of two polynomials is not equal, we can introduce extra zero coefficients in the polynomial
with the smaller degree. For multiplication, given two polynomials a(x) = anx

n + · · · + a1x + a0 and
b(x) = bmx

m + · · ·+ b1x+ b0, their product is defined as,

p(x) = a(x)b(x) = (anbm)xn+m + · · ·+ (a2b0 + a1b1 + a0b2)x2 + (a0b1 + a1b0)x+ (a0b0).

More formally, the product is defined using distribution and the fact that (axi)(bxj) = (ab)xi+j .

Exercise 7.1. What is the degree of a(x)b(x) if the degree of a(x) is n and b(x) is m?

Hint: It need not be n+m. why?
We mentioned while giving examples of rings that if R is a commutative ring then R[x] is a commutative

ring too. Using the definition above, the polynomials in multiple variables can be defined using induction. We
can consider R[x1, x2, · · · , xk] to be the ring of polynomials whose coefficients come from R[x1, x2, · · · , xk−1].

Another definition of interest is the monic polynomial whose leading coefficient (non-zero coefficient of
the highest degree) is 1. A polynomial is constant iff the only non-zero coefficient is the degree 0 one (a0).

The most important polynomial rings for us would be Zm[x] and Z[x],R[x] etc..

Exercise 7.2. Suppose a(x) = 2x3 + 2x2 + 2 is a polynomial in Z4[x], what is a(x)2?



7.2 Polynomials over fields

After defining addition and multiplication we would like to define division and gcd of polynomials. It turns
out that these definitions make sense when R is a field. For this section, we will assume that we are given a
field F and the polynomials are in F [x]. We know that F [x] is an integral domain since F is one.

Exercise 7.3. Show that F [x] is an integral domain if F is an integral domain.

Exercise 7.4. For the remaining section, note where we use that the underlying ring of coefficients F is a
field.

Theorem 7.5. Division: Given two polynomials f(x) and g(x), there exist two unique polynomials called
quotient q(x) and remainder r(x), s.t.,

f(x) = q(x)g(x) + r(x).

where the degree of r(x) is less than the degree of g(x).

Proof. Existence: Suppose the degree of f(x) is less than degree of g(x) then q(x) = 0 and r(x) = f(x). This
will be the base case and we will apply induction on the degree of f(x).

Say f(x) = fnx
n+ · · ·+f1x+f0 and g(x) = gmx

m+ · · ·+g1x+g0 with m ≤ n. Multiply g by fng
−1
m xn−m

and subtract it from f .

f(x)− fng−1m xn−mg(x) = (fn−1 − gm−1fng−1m )xn−m−1 + · · · = l(x).

So l is a polynomial with lower degree and by induction it can be written as l(x) = q′(x)g(x) + r(x).
This implies f(x) = (fng

−1
m xn−m+ q′(x))g(x)+r(x). So we can always find q(x) and r(x) with the condition

given above. This method is called long division and is the usual method of dividing two numbers.

Exercise 7.6. What is the relation between the usual division between two integers you learnt in elementary
classes and long division.

Uniqueness: Suppose there are two such decompositions f = q1g + r1 and f = q2g + r2 (notice that we
have suppressed x for the sake of brevity). Then subtracting one from another,

0 = (q1 − q2)g + (r1 − r2).

Exercise 7.7. Show that this implies q and r are unique.

ut

Using the division algorithm, we can define the Euclidean GCD algorithm.

Exercise 7.8. Read and understand the Euclidean gcd algorithm for two positive numbers.

Lets define greatest common divisor (gcd) first. Given two polynomials f, g, their greatest common divisor
is the highest degree polynomial which divided both f, g. The important observation for Euclidean gcd is, if
f = gq1 + r1 then

gcd(f, g) = gcd(g, r1).

Without loss of generality we can assume that f has higher degree than g and hence r has lower degree
than g and f . We can continue this process, say g = q2r1 + r2. Then the task reduces to finding the gcd of
r1 and r2. Ultimately we get two polynomials, s.t., rn | rn−1. Then rn is the gcd of f and g.

Exercise 7.9. Show that any polynomial which divides both f and g will also divide rn mentioned above.
Show that rn divides both f and g.
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From the previous exercise it is clear that rn is one of the gcd (it divides both and has highest degree).

Exercise 7.10. Why is gcd unique?

Exercise 7.11. Imp: Show that using Euclidean algorithm for gcd, if gcd(f, g) = d then there exist two
polynomials p, q, s.t., d = pf + qg.

Lets define primes in the ring of polynomials. They are called irreducible polynomials (irreducible elements
of integral domain F [x]). A polynomial f is irreducible iff it is not constant and there does NOT exist two
non-constant polynomials g and h, s.t., f = gh.

Exercise 7.12. Given that a monic polynomial g is irreducible, show, any polynomial f is divisible by g or
their gcd is 1. This property can be re-stated, any irreducible polynomial can’t have a non-trivial gcd (trivial
gcd: 1 or the polynomial itself).

With this definition we can start finding the factors of any polynomial f . Either f is irreducible or it
can be written as gh. If we keep applying this procedure to g and h. We get that any polynomial f can be
written as,

f = cg1g2 · · · gk.

Where gi’s are irreducible monic polynomials and c is a constant in the field F .
Can two such factorizations exist? It turns out, like in the case of natural numbers, this factorization

is unique up to ordering of polynomials. For the contradiction, suppose there are two such factorizations
cg1 · · · gk and ch1 · · ·hl.

Exercise 7.13. Why can we assume that the constant is the same for both factorizations?

We know that since g1 is irreducible it can’t have a non-trivial gcd with either h = h1 · · ·hl−1 or hl. We
will also show that it can’t have gcd 1 with both. Suppose gcd(hl, g1) is 1. Then using Euclidean gcd,

1 = phl + qg1 ⇒ h = pf + qg1h.

Since g1 divides both terms on the R.H.S, it divides h. Hence the gcd of h and g1 is g1. So g1 either
divides hl or h = h1 · · ·hl−1.

If it divides h1 · · ·hl−1, we can further divide it and ultimately get that g1 divides hi for some i. But
since g1 and hi both are irreducible and monic, hence g1 = hi. This gives the theorem,

Theorem 7.14. Unique factorization: Given a polynomial f it can be written in a unique way as a product
of irreducible monic polynomials up to ordering.

f(x) = cg1(x)g2(x) · · · gk(x)

Where c is a constant in F (the leading coefficient of f) and gi’s are irreducible monic polynomials.

Exercise 7.15. The order of going from division algorithm to Euclidean GCD to unique factorization is
important. Where else have you seen this?

There is an easy way to find out whether a degree 1 polynomial x − a divides a polynomial f or not.
Substitute a in the polynomial f (we call the evaluation f(a)), if it evaluates to zero then x − a divides f
otherwise not. If f(a) = 0, we say that a is a root of f . The proof of this is given as an exercise.

Using the factorization theorem we can show that any polynomial of degree d can have at most d roots.
The proof of this theorem is left as an exercise.

Theorem 7.16. Given a polynomial p of degree d over a field F . There are at most d distinct roots of p.
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7.3 Field extension

Exercise 7.17. Why do we need complex numbers?

It might seem a weird question given the context. But lets look at the answer first. Mathematician didn’t
have the roots of polynomial x2 + 1 in the field R. So they came up with another field C where the solution
existed.

Can we do it for other fields and other polynomials? This can be done and is known as field extension.
Lets try to construct such a field extension.

Suppose we are given a field F and a polynomial p in it. We can look at the set of all polynomial in F [x]

modulo the polynomial p. This set is known as F [x]
(p) . The reason for this is that (p) is an ideal generated by

polynomial p (it contains all multiples of p).

Exercise 7.18. Show that (p) is an ideal.

So F [x]
(p) is just the quotient ring generated by the ideal (p).

A more intuitive way to understand this ring is, it is the set of polynomials in F [x] assuming that two
polynomials are equal if they only differ by a multiple of p. Using the division algorithm we can always

reduce any polynomial f to a polynomial r, s.t., f = qp+ r. Then by above discussion r = f in F [x]
(p) . In the

algebraic language, r is the representative of the additive coset of F [x] containing f .

Exercise 7.19. Show that the elements of F [x]
(p) are basically all the polynomials with degree less than deg(p).

The ring F [x]
(p) is a field iff p is irreducible (proof is left as an exercise). This field F [x]

(p) is called the field

extension of F . It is easy to see that an isomorphic copy of F is a subfield of F [x]
(p) .

The great thing is that there is a root of p in this new field. If you think for a minute the root is x !!

The field F [x]
(p) can also be viewed as a vector space over F .

Exercise 7.20. What is the dimension of that vector space?

We are interested in these field extensions because they will help us characterize finite fields.

7.3.1 Another way to look at field extension

More general way to define field extensions is through subfields. Suppose K is a subset of a field L, s.t., K
is field itself. Then we say that K is a sub-field of L or L is an extension of K.

Suppose s is an element of L not in K. We can extend K to include s. The smallest subfield of L which
contains K as well as s is called K(s). We can similarly define K(S), where S is a set.

Why are the two interpretations given above similar. If s was a root of an irreducible polynomial p in K

then the field K(s) is precisely K[x]
(p) . All the elements of K(s) can be viewed as polynomials in K[x] with

degree less than deg(p) (substituting s for x).

Exercise 7.21. Show that Q(
√

2) = {a+ b
√

2 : a, b ∈ Q} is a subfield of R.

Notice that complex numbers can be viewed as R(i) or as R[x]
x2+1 .

Suppose L is a field extension of K. Then L can be seen as a vector space over K. The dimension of the
vector space is known as the degree of the extension.

Note 7.22. You might have seen vector spaces over reals and complex numbers. They can be defined over
arbitrary field F by assuming that the coefficients (scalars) come from F and any addition and multiplication
of scalars can be done in accordance with the field.

Exercise 7.23. What is the degree of extension K[x]
p .

Note that the subfield perspective of field extension is more general than the field extension using poly-
nomials. Reals are an extension of rationals. It can be shown that such an extension cannot be obtained by
any irreducible polynomial over rationals.
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7.4 Assignment

Exercise 7.24. Write a program to compute the coefficient of xi in a(x)b(x) given two polynomials a(x)
and b(x).

Exercise 7.25. Compute the product of 7x3 + 2x2 + 2x+ 4 and 2x2 + 5x+ 1 in Z14.

Exercise 7.26. Show that in Zp (p is a prime), (x+ y)p = xp + yp.

Exercise 7.27. Show that if R is an integral domain then so is R[x].

Exercise 7.28. Show that f(x) in F [x] has an inverse iff f(x) is a constant polynomial (zero excluded).

Exercise 7.29. Find out the quotient and remainder when x3 + 5x2 + 2x+ 3 is divided by x2 + 1 in Z7.

Exercise 7.30. If F is a field, is F [x] also a field?

Exercise 7.31. What is the gcd of xn + 1 and xm − 1 in Z2[x].

Exercise 7.32. Show that x− a divides f iff f(a) = 0.

Exercise 7.33. Hard: Prove that the ring F [x]
(p) is a field iff p is irreducible.

Exercise 7.34. Prove the theorem 7.16.
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8

Finite Fields

We have learnt about groups, rings, integral domains and fields till now. Fields have the maximum required
properties and hence many nice theorems can be proved about them. For instance, in previous lectures we
saw that the polynomials with coefficients from fields have unique factorization theorem.

One of the important sub case of fields is when they are finite. In this case the fields can be completely
characterized up to isomorphism and have lot of applications in computer science. We will cover the charac-
terization and an application in these lecture notes.

8.1 Characteristic of a field

We have seen how the characteristic of a ring was defined.

Exercise 8.1. What is the characteristic of a ring?

Since field is a special case of rings, the definition can be applied to fields too. The characteristic of a
field F is the minimum n ∈ N, s.t., n1 = 0. Here n1 denotes the addition of multiplicative identity n times,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

In general, the characteristic might not exist for field (say R). In that case we say that characteristic is
zero. For the case of finite field though, the characteristic is always a positive number. Why?

Suppose n is a characteristic of a finite field. If n is composite, say n = pq, then (p1)(q1) = 0. But F
does not have a zero divisor (it is a field) and hence either p1 = 0 or q1 = 0, establishing contradiction. So
we get the theorem,

Theorem 8.2. The characteristic of a finite field is always a prime.

Note 8.3. p1 = 0 implies that pf = 0 for all f ∈ F , the proof is given as an exercise.
How does a field with characteristic p looks like? We can look at the additive structure. It turns out that

it can be seen as a vector space over Zp.

Exercise 8.4. Review the definition of a vector space over a field.

Theorem 8.5. A finite field F of characteristic p is a vector space over Zp. Hence, if there are r basis
elements then |F | = pr.

Proof. Define nf to be f + f + · · ·+ f︸ ︷︷ ︸
n times

. From the previous discussion, the only relevant values of n are

{0, 1, · · · , p− 1}.
Let us look at the set generated by S = {f1, f2, · · · , fk}. We call it the span,

span(S) = {n1f1 + n2f2 + · · ·+ nkfk : ni ∈ {0, 1, · · · , p− 1} ∀i}.



Exercise 8.6. Show that span(S) is the smallest additive group containing S.

Clearly one set exist for which span is the entire field (the field itself).

Exercise 8.7. Show that F is a vector space over Zp.

Say a basis B = {b1, b2, · · · , br} is the minimal set of elements such that span(B) = F . We have assumed
that B has r elements. Then,

span(B) = {n1b1 + n2b2 + · · ·+ nrbr : ni ∈ {0, 1, · · · , p− 1} ∀i}.

We claim that no two elements of the above set are same. If they are then some element of B can be
written as a linear combination of others, violating the minimalness of B. Hence span(B) has no duplicates
and it is equal to F . So the cardinality of F is pr.

ut

Note 8.8. The theorem shows that as an additive group, a field of size pr, is isomorphic to (Zp)r.
By the previous theorem we have proved that every finite field has characteristic some prime p and

number of elements are pr, some power of its characteristic. Hence the number of elements in a finite field
can only be a prime power.

Does there exist a finite field for every prime power. Clearly for every p, Zp is a field.

8.1.1 Finite fields of order pr

To construct fields of cardinality pr, we use the concept of field extension. Suppose g is an irreducible

polynomial in Zp. Then we know that
Zp[x]
(g) is a field (from field extensions).

Exercise 8.9. Show that Z3[x]
x2+1 is a field. What is its cardinality? What is the characteristic?

It is clear that in such a field p1 = 0. That shows that characteristic of the field is p. The different
elements of this field are all the remainder polynomials modulo g. In other words, all the polynomials of
degree deg(g)− 1 with coefficients from Zp. So the number of elements in this field are pdeg(g).

This shows that to construct a finite field of size pr, we need to find an irreducible polynomial of degree r.
It is known that such an irreducible polynomial always exist. The proof of this statement will not be covered
in this class.

So there always exist at least one field of size pr. It can actually be shown that all such fields of size pr

are isomorphic and we call them Fpr . For r = 1, this field is Zp, we will also call it Fp.

Exercise 8.10. What is the difference between vector space Z2
3 and field Z3[x]

x2+1?

We won’t prove that there exist a unique field of size pr up to isomorphism. But we will provide a partial
justification. We have seen that the additive group of any field of size pr is isomorphic to (Zp)r. In the next
section we will show that their multiplicative group is also isomorphic to Zpr−1 (it is cyclic). So for any two
finite fields of same size, their additive groups and multiplicative groups are isomorphic.

Exercise 8.11. Why is this a partial and not full proof that two fields of the same size are isomorphic?

8.1.2 Primitive element

We need to show that the multiplicative group of any field is cyclic. That means, there exist an element
f ∈ F , s.t., the order of f is |F | − 1 (why did we subtract 1?). Such an element generates the whole group
F − {0} = {f0, f1, · · · , f |F |−2}.

Definition 8.12. Primitive element: An element f of F which generates the multiplicative group of the field
F is called the primitive element of F .
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To show that any field’s multiplicative group is cyclic, we just need to show the existence of a primitive
element.

Theorem 8.13. For any finite field F , there always exist a primitive element of F .

Proof. Lets call the multiplicative group F ∗ = F − {0} and |F ∗| = n. Since F ∗ has order n, for all elements
x of F ∗,

xn − 1 = 0

So there are exactly n roots of the above equation (why exactly n?).
For any element x, the order d divides n, hence x is a solution of p(d) = xd − 1 for some d | n. Notice

that the polynomial p(d) has at most d roots.
For the sake of contradiction, suppose there are no primitive elements. Then every element has order

strictly less than n. We would like to show that there are not enough roots (n) for the polynomial xn − 1.
So we would like to show, ∑

d<n,d|n

d < n (8.1)

Note 8.14. There is a strict inequality d < n in the summation index as well as the inequality.

Exercise 8.15. Show that this is not true for some n.

The reason why the above strategy does not work is that we are counting lot of elements multiple times.
A solution of p(d) will be a solution of p(2d), p(3d), · · · . There is a decent chance that some of numbers
2d, 3d, · · · might be divisors of n too.

So say e(d) is the number of elements with order exactly d. Hence instead of Eq. 8.1, the contradiction
will be shown by proving the equation, ∑

d<n,d|n

e(d) < n (8.2)

This equation follows from the following two claims. The proof of first one is left as an exercise, other
will be proved here.

Note 8.16. φ(d) is number of elements co-prime (gcd 1) to d.

Claim. For a number n,
∑
d|n φ(d) = n.

Proof hint: For any number k ≤ n, look at gcd(k, n) and k
gcd(k,n) .

Claim. If there exist an element of order d then φ(d) = e(d).

Proof. Suppose the element with order d is x. Then the d roots for xd−1 are precisely x0, x1, · · · , xd−1 (these
are d roots and there are at most d roots). The order of xk is d

gcd(d,k) .

Exercise 8.17. Suppose the order of x in a group G is d. Show that for xk, the order is d
gcd(d,k) .

Hence the elements with order d are precisely xk, s.t., gcd(d, k) = 1. So e(d) = φ(d).
ut

Using the claims,

n =
∑
d|n

φ(d) >
∑
d|n

e(d).

The inequality follows because e(d) ≤ φ(d) and we have assumed e(n) = 0. So the equation 8.2 follows
from non-existence of primitive element and hence we get the contradiction.
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Note 8.18. By definition of e(d),
∑
d|n e(d) = n. Hence there should be equality in the above equation. That

means there are exactly φ(d) elements of order d in a field n where d | n. Specifically, there are φ(n) primitive
elements for a field F with size n+ 1.

ut

Since Zp is a field, by previous theorem, Fp = Zp is cyclic as a multiplicative group. This can be generalized
to show that even Z×

pk
is cyclic.

Exercise 8.19. Show that Z×
pk

is NOT isomorphic to the multiplicative group of Fpk for k > 1.

Theorem 8.20. If n = pk for some power k of an odd prime p then G = Z×n is cyclic.

Note 8.21. This is not true for even prime, we have seen that Z×8 is not cyclic.

Exercise 8.22. Find out where did we use the fact that p is odd.

Proof. Assume that t = pk−1(p− 1), the order of the group G.
We know that Fp is cyclic and hence have a generator g. We will use g to come up with a generator of

G. First notice that,
(g + p)p−1 = gp−1 + (p− 1)gp−2p 6= gp−1 mod p2.

So either (g+p)p−1 or gp−1 is not 1 mod p2. We can assume the latter case, otherwise replace g by g+p
in the argument below.

So gp−1 = 1 + k1p where p - k1. So using binomial theorem,

gp(p−1) = (1 + k1p)
p = 1 + k2p

2.

Where p - k2

Exercise 8.23. Continuing this process, show that,

gp
e−1(p−1) = 1 + kep

e,

with p - ke.

From the previous exercise gt = 1 mod pk but gt/p 6= 1 mod pk. The only possible order of g then is
pk−1d where d is a divisor of p− 1 (because the order has to divide t, Lagrange’s theorem).

If the order is pk−1d, then

gp
k−1d = 1 mod pk = 1 mod p.

But gp = g mod p (why?). That implies gd = 1 mod p. Since p− 1 is the order of g modulo p (g is the
generator), implies d = p− 1. Hence proved.

ut

8.2 Application: The classical part of quantum algorithm for factorization

One of the most important achievements of quantum computing has been to solve factorization in polynomial
time. There is no known efficient classical algorithm to factorize a number. The problem is easy to state,
given a number n, find the factorization of n.

Note 8.24. An efficient algorithm for factorization runs in time polynomial in log n, since the input size is
log n (the number of bits needed to specify n).

The quantum algorithm works by reducing the problem classically to something known as the hidden
subgroup problem (HSP). Shor’s factorization algorithm (1994) can be reduced to giving an efficient algorithm
to solve HSP on a quantum computer.

The quantum algorithm for HSP is out of scope of this course. But we will present the classical reduction
from factorization to HSP, a neat application of many things we learnt in this course.
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8.2.1 Hidden subgroup problem (HSP)

In the hidden subgroup problem, we are given a group G and a function f : G→ R which hides a subgroup
H. By hiding a subgroup means that the functions assign the same value to two elements from the same
coset and different values to elements from a different coset. The subgroup H is not known and the task is
to find this subgroup.

Note 8.25. For this case, we assume that a black-box is given which computes the value of a function on
group elements. In practice, if we can compute the function efficiently then the algorithm for finding hidden
subgroup is efficient too.

The interest in this problem is because many problems like order-finding, discrete logarithm can be
thought of as HSP’s over finite abelian groups. Their is a quantum algorithm for solving HSP over any finite
abelian group. If we can solve HSP on non-abelian groups then it can be used to solve important problems
like graph isomorphism and shortest vector problem in a lattice.

The problem of order-finding is that given an element g in a group G, find the order of g in G (smallest
r, s.t., gr = 1). Lets see how order-finding can be thought of as an example of HSP in Z.

Suppose the order is r (the quantity we need to find). The set of multiples of r form a subgroup of Z known
as rZ. The cosets are the residue classes modulo r. Given an element x ∈ Z, the function ax = ax mod r is
constant on cosets and distinct on different cosets.

Exercise 8.26. Prove the above assertion.

This function can be computed efficiently (repeated squaring) and hence order-finding can be posed as a
hidden subgroup problem.

Note 8.27. Above discussion shows that order-finding is an HSP over an abelian group (Z, which is not
finite). The quantum algorithm for finite abelian groups can be modified to handle this case too.

8.2.2 Factorization to order-finding

In this section we will reduce the factorization of n to order-finding in the group Z×n . Hence, complete the
reduction from factorization to hidden subgroup problem.

We will first get rid of the trivial cases, it can be easily checked if the number is even or if n = mk (take
the square root, cubic root etc. up to log n). So it can be assumed that n is a number of type kk′ where k
and k′ are co-prime and odd. We are interested in finding a non-trivial factor of n (not 1 or n). Once found
one factor, we can repeat the procedure to find the complete factorization.

Look at the square roots of 1 mod n, i.e., b for which b2 = 1 mod n. Clearly there are two solutions
b = ±1 mod n. Suppose there exist a b 6= ±1 mod n. Then b2 − 1 is divisible by n and b± 1 is not. So the
gcd(b± 1, n) will give non-trivial factors of n.

The reduction from factorization to order-finding basically searches for such a b. It can be shown using
Chinese remainder theorem that such a b always exists (exercise).

Exercise 8.28. In the if statement of the algorithm why didn’t we check that b = 1 mod n?

The only thing we need to show is that there are enough a’s for which b = ar/2 6= ±1 mod n is a
square-root of 1 mod n.

Note 8.29. The quantum algorithm is a probabilistic algorithm, hence showing that there are enough “good”
a’s works.

Theorem 8.30. Suppose n is a product of two co-prime numbers k, k′ > 1. For a randomly chosen a, the
probability that a has an even order r and ar/2 6= −1 mod n is at least 1/4.
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Check if n is even or of the form n = mk ;
Pick an a, s.t., gcd(a, n) = 1 (else we have already found a non-trivial factor of n) ;
for i = 1, · · · do

Find the order of a and call it r (use the quantum algorithm for order-finding) ;
if r is odd or ar/2 = −1 mod n then

Pick another a co-prime to n ;
else

Found b = ar/2 6= ±1 mod n, square root of 1 ;
Find the non-trivial factors from gcd(b± 1, n) ;
Break;

end
end

Algorithm 1: Algorithm for factorization using order-finding

Proof. This proof is taken from the book Quantum computing and Quantum information by Nielsen and
Chuang. We introduce a notation, pow2(z), the highest power of 2 that divides any number z.

First we prove a lemma for a number q = pk, which is a prime power. Say m = φ(q) = pk−1(p − 1)
(exercise). By theorem 8.20, Z×q is cyclic, say g is the generator (m is the least number, s.t., gm = 1 mod q).

Suppose l = pow2(m) (m is even and hence l ≥ 1).

Lemma 8.31. Say, we choose a random element from Z×q . With probability 1/2, the order r satisfies
pow2(r) = l.

Proof. We know that gt has order m
gcd(m,t) . Then it can be easily seen that pow2(r) = l iff t is odd.

ut

Now consider the prime factorization n = pi11 · · · piss . By Chinese remainder theorem,

Z×n ∼= Z×
p
i1
1

× · · · × Z×
piss
.

So, to randomly chose a, we can pick random a1, · · · , as from the respective Z×pi ’s. Say rj are the orders

of aj modulo p
ij
j .

Claim. Suppose the order r of a is odd or ar/2 = −1 mod n. Then pow2(rj) is same for all j.

Proof. The order is odd iff all rj ’s are odd. Otherwise, if ar/2 = −1 mod p
ij
j then none of rj divide r/2 (we

use the fact that pi’s are not 2).
All the rj ’s divide r but not r/2, so pow2(rj) is the same. ut

From lemma 8.31, with half the probability, The order rj of aj will be such that pow2(rj) = lj (where

lj = pow2(p
ij−1
j (pj − 1))). Call the case when pow2(rj) = lj as the “first” case and other the “second” case.

We know that both cases happen with probability 1/2.
Notice that lj ’s only depend on n. If all lj are equal, pick a1’s from first case and a2 from the second case.

If they are unequal, say l1 6= l2, then pick the a1, a2 from the first case. So in either scenario, rj ’s can’t be
all equal. Which implies r is even and a

r
2 6= 1 mod n (by claim). Since we have only fixed at most 2 cases

out of s, the probability is at least 1/4.
ut

Hence the reduction from factorization to order finding is complete.
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8.3 Assignment

Exercise 8.32. Biggs: Prove that the set of all elements of type 1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

form a subfield.

Exercise 8.33. If p1 = 0, prove that pf = 0 for all f ∈ F .

Exercise 8.34. Suppose in a field F , p1 = 0 for a prime p. Show that the characteristic of that field is p.

Exercise 8.35. Show that any field of size p is isomorphic to Zp.

Hint: 0 and 1 should exist in that field. Now construct the obvious isomorphism.

Exercise 8.36. Find a primitive element in field F23

Exercise 8.37. Write a program to find if a degree 2 polynomial is irreducible or not in Fp for a prime p.

Exercise 8.38. Construct the field F49.

Hint: Look at square roots modulo 7.

Exercise 8.39. Prove the claim 8.16.

Hint: Look at any number m less than n as m = gcd(m,n).m′.

Exercise 8.40. Discrete logarithm: Given an element a and a generator g in the group G = Z×m, the discrete
log is the problem of finding least l, s.t., gl = a. Show that it can be cast as an HSP.

Hint: Use the function axgy where x, y ∈ Z|G|.

Exercise 8.41. Show that for n = kk′ where k, k′ are co-prime, there exist a square root of 1 mod n which
is not ±1 mod n.

Exercise 8.42. If n = pk, show that φ(n) = pk−1(p− 1).
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