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This is a small note on basic concepts in linear algebra which will be used in the course. These definitions
are taken from Gilbert Strang’s book ”Linear algebra and its applications”. For a detailed introduction to
these concepts, please refer to Strang’s book or any other elementary book on linear algebra.

We will be intereseted in vector space Rn, but these concepts are valid for general vector spaces.

1 Vector space

A vector space is a set of elements closed under addition and scalar multiplication (all linear combinations).
In other words, V is a vector space if for any x, y ∈ V, α ∈ R, x+ y, αx ∈ V too.

There is a more formal definition with axioms about the binary operations and identity element. But the
one above will provide the intuition for us. The most common examples for a vector space are Rn, Cn, space
of all m× n matrices and space of all functions.

A subspace is a subset of a vector space which is also a vector space and hence closed under addition and
scalar multiplication. A span of a set of vectors S is the set of all possible linear combinations of vectors in
S. It forms a subspace.

Exercise 1. Give some examples of subspace of Rn.

2 Linear independence

To understand the structure of a vector space, we need to understand how can all the elements be generated.
From the definition, the concept of linear dependence/independence comes out.

Given a set of vectors v1, · · · , vn ∈ V , they are linearly dependent, if vector 0 can be expressed as a linear
combination of these vectors.

α1v1 + · · ·+ αnvn = 0,∃i, αi 6= 0.

This means that at least some vector in the set can be represented as the linear combination of other
elements. Contrastingly, the set is called linearly independent iff

α1v1 + · · ·+ αnvn = 0⇒ ∀i, αi = 0

Intuitively, if we need to find generators of a vector space, a linearly dependent set is redundant. But
a linearly independent set might not be able to generate all the elements of a vector space through linear
combinations. This motivates the definition of basis, which is basically a maximal linearly independent set
of a vector space.

Definition 1. Basis: A set S is called a basis of a vector space V iff S is linearly independent and any
vector in V can be represented as a linear combination of elements of S.

Notice that since any element in V can be represented as a linear combination of elements of S. This
implies that adding any v ∈ V \S in S will make it linearly dependent (hence maximal linearly independent
set).

One of the basic theorems of linear algebra says that the cardinality of all the basis sets is always the
same and it is called the dimension of the vector space. Also given a linearly independent set of V , it can
be extended to form a complete basis of V (keep adding linearly independent vectors at every stage).

Note: There is no mention about the uniqueness of the basis. There can be lot of basis sets for a given
vector space. The span of k < n elements of a basis B1 of V (dimension n) need not be contained in the
span of some k (even n − 1) elements of B2. Consider the standard basis B = {e1, · · · , en} and vector
x = (1, 1, · · · , 1)T . Now x or the space spanned by x is not contained in span of any n− 1 vectors from B.



3 Inner product space

All the examples we discussed above are not just vector spaces but inner product spaces. That means they
have an associated inner product. Again we won’t go into the formal definition. Intuitively, inner product (dot
product for Rn) allows us to introduce the concept of angels, lengths and orthogonality between elements of
vector space. We wil use xT y to denote the inner product between x and y.

Definition 2. Orthogonality: Two elments x, y of vector space V are called orthogonal iff xT y = 0.

Definition 3. Length: The length of a vector x ∈ V is defined to be ‖x‖ =
√
xTx.

Using orthogonality we can come up with a simpler representation of a vector space. This requires the
definition of orthonormal basis.

Definition 4. A basis B of vector space V is orthonormal iff,

– For any two elements x, y ∈ B, xT y = 0,
– For all elements x ∈ B, ‖x‖ = 1.

Now every vector can be represented as a usual column vector (n × 1 matrix) with respect to this
orthonormal basis. It will have co-ordinates corresponding to every basis vector and operation between
vectors like summation, scalar multiplication and inner product will make sense as the usual operation on
the column vectors.

Given any basis of a vector space, it can be converted into an orthonormal basis. Start with a vector of
the basis and normalize it (make it length 1). Take another vector, subtract the components in the direction
of already chosen vectors. Normalize the remaining vector and keep repeating this process. This process
always results in an orthonormal basis and is known as Gram-Schmidt Process.

4 Vector spaces relating to matrices

Given an m× n matrix M with real entries, we now look at few vector spaces related to matrix M .

– Image/Column space: This is the vector space spanned by columns of M . Since all columns are elements
of Rm. This vector space is the subspace of Rm.

– Row space: This is the vector space spanned by rows of M . Since all rows are elements of Rn. This vector
space is the subspace of Rn. It is the column space of MT .

– Null space: It is the set of all vectors v ∈ Rn, s.t., Mv = 0. It is the subspace of Rn. The dimension of
the null space is called the nullity of M .

– Null space of MT : As mentioned above it is the set of vectors in Rm, s.t., MT v = 0. It is the subspace
of Rm.

Exercise 2. Verify that all of them are subspaces.

There are two basic theorems which are of importance here.

Theorem 1. The dimension of row space is the same the dimension of column space. It is called the rank
of M .

This does not say that the column space and row space are the same. It only says that the dimension is
same. As an exercies, give an example where row space and column space are not the same. Lets say that
rank of M is r.

Theorem 2. Rank-nullity theorem: The sum of rank and nullity of M is n.

rank(M) + nullity(M) = n
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In other words, the dimension of row space and dimension of null space for M sum up to n. Applying
this to MT , it tells us that sum of the dimension of column space and the dimension of null space of MT

is m. Actually, a stronger statement can be made, suppose C(M), R(M), N(M), N(MT ) represent the four
subspaces discussed above respectively. Then,

C(M)⊕N(MT ) = Rm and R(M)⊕N(M) = Rn

This statement not just says that the dimensions add up to m/n, but that the subspaces are orthogonal
and completely partition the spaces Rm/Rn.
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