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We have studied vector space Rn and various structures in this space till now. A matrix is an object
in Rn×n. It can be viewed as a vector in space Rm, where m = n2, with additional structure (rows and
columns). The next few lectures will talk about how this extra structure gives rise to various properties.

1 Linear operators

Given two vector spaces V and W over R, a linear operator M : V → V is defined as an operator satisfying
following properties.

– f(x+ y) = f(x) + f(y).
– f(αx) = αf(x), ∀α ∈ R.

These conditions imply that the zero of V is mapped to the zero of W . Also,

f(α1x1 + · · ·+ αkxk) = α1f(x1) + · · ·+ αkxk

Where x1, · · · , xk are elements of V and αi’s are in R. Because of this linearity, if the function is defined
on any basis, it can be extended to the entire vector space. Hence a function is uniquely specified by the
values it takes on any chosen basis of V .

1.1 Matrices as linear operators

Given two vector spaces V = Rn and W = Rm, The operation x ∈ V → Mx ∈ W is a linear operation for
any matrix M of dimension Rm×n. So action of a matrix is a linear operation on the corresponding vector
spaces.

Can any linear operation be specified by a matrix. The standard basis for a vector space is Rn is e1, · · · , en.
Where ei is the vector whose ith co-ordinate is 1 and rest 0.

Suppose w1, · · · , wn are the images of e1, · · · , en under the linear operation f respectively. Then define
Mf to be the matrix with columns w1, · · · , wn. Notice that the matrix Mf and f act the same on standard
basis. From the observation in the previous section, they are the same operation. Hence any linear operation
can be specified as a matrix.

The previous discussion does not depend upon the chosen basis. We can pick our favorite orthonormal
basis, and the linear operator can similarly be written in the new basis as a matrix (The columns of matrix
are images of orthonormal basis). To compute the action of a linear operator, express v ∈ V in the preferred
basis and multiply with the matrix. We will use these terms interchangeably in future (the basis will be clear
from the context).

1.2 Examples of matrices

– Zero matrix: The matrix with all the entries O. It acts trivially on every element and takes them to the
0 vector.

– Identity matrix: The matrix with 1’s on the diagonal and 0 otherwise. It takes v ∈ V to v itself.
– All 1’s matrix (J): All the entries are 1.

Exercise 1. What is the action of matrix J .
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1.3 Kernel, image and rank

For a linear operator/matrix (from V to W ), the kernel is defined to be the set of vectors which map to 0.

ker(M) = {x ∈ V : Mx = 0}

Here 0 is a vector in space W . The image is the set of vectors which can be obtained through the action of
the matrix.

img(M) = {x ∈W : ∃y ∈ V, x = My}

Exercise 2. Show that img(M and ker(M) are subspaces.

Notice that ker(M) is a subset of V , but img(M) is a subset of W . The dimension of img(M) is known
as the rank of M (rank(M)). The dimension of ker(M) is known as the nullity of M (nullity(M)). For a
matrix M ∈ L(V ), by the famous rank-nullity theorem,

rank(M) + nullity(M) = dim(V ).

Here dim(V ) is the dimension of the vector space V .

Proof. Suppose u1, · · · , uk is the basis for ker(M). We can extend it to the basis of V , u1, · · · , uk, vk+1, · · · , vn.
We need to prove that the dimension of img(M) is n − k. For this, it can be shown that Mvk+1, · · · ,Mvn
forms the basis of img(M).

Exercise 3. Prove that any vector in image can be expressed as linear combination of Mvk+1, · · · ,Mvn. Also
any linear combination of Mvk+1, · · · ,Mvn can’t be zero vector.

Exercise 4. What is the kernel and image of J (the all 1’s matrix)?

1.4 Vector space of linear operators

The addition of two matrices is defined as the entrywise addition. Similarly αM (scalar multiplication) is
defined to be the matrix having all entries of M multiplied by α. Hence the space of all linear operators from
V to W (denoted L(V,W )) is a vector space. The space of linear operators from V to V will be denoted as
L(V ).

Exercise 5. What is the dimension of these vector spaces?

In convex optimization, some times the cone we are concerned with will lie in these spaces of linear
operators.

2 Operations on matrices

Lets look at some of the basic operations on these matrices.

2.1 Transpose

Given an m× n matrix A, the transpose of this matrix AT is an n×m matrix, s.t.,

A[i, j] = AT [j, i].

Here A[i, j] denotes the entry in the ith row and jth column. A matrix is called symmetric iff it is equal to
its transpose,

A = AT .
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2.2 Trace

The trace of a matrix is the sum of all the diagonal elements.

tr(A) =
∑
i

A[i, i]

2.3 Multiplication

Given two matrices A and B, their multiplication AB is defined as,

AB[i, j] =
∑
k

A[i, k]B[k, j].

From the definition it is clear that the multiplication AB makes sense iff the number of columns of A are
the same as number of rows of B. This definition is preferred over entrywise multiplication, because it agrees
with the notion of composition of linear operators.

2.4 Entrywise multiplication

The entrywise multiplication of two matrices is known as Hadamard product and only makes sense when
both of them have same number of rows and columns. The Hadamard product of two matrices A,B is

(A ◦B)[i, j] = A[i, j]B[i, j].

The related operation is when you add up the entries of this Hadamard product.

(A •B) =
∑
i,j

A[i, j]B[i, j]

Notice that A •B is a scalar and not a matrix.

Exercise 6. Given a matrix, express • operation in terms of multiplication and trace operation.

2.5 Direct sum

Given matrices A ∈ L(V ) and B ∈ L(W ), their direct sum is in L(V ⊕W ).

A⊕B =

(
A 0
0 B

)
Notice that the dimension of space V ⊕W is dim(V ) + dim(W ).

2.6 Tensor product

Given matrices A ∈ L(V ) and B ∈ L(W ), their tensor product is in space L(V ⊗W ).

(A⊗B)[(i, k), (j, l)] = A[i, j]B[k, l]

Exercise 7. What is the dimension of space V ⊗W?

2.7 Inverse

Inverse of a matrix M is the matrix M−1, s.t., MM−1 = M−1M = I. The inverse only exists if the matrix
has full rank ( the columns of M span the whole space).

Exercise 8. What is the inverse of matrix J (all 1’s matrix).
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3 Eigenvalues and eigenvectors

A matrix M ∈ L(V,w) is square if dim(V ) = dim(W ). In particular, a matrix M ∈ L(V ) is always square.
Consider a matrix M ∈ L(V ), any vector v ∈ V which satisfies Mv = λv for some λ ∈ R is called the
eigenvector of matrix M . λ is called the eigenvalue corresponding to eigenvector v.

Exercise 9. Given two eigenvectors v, w, when is there linear combination an eigenvector itself?

From the previous exercise, all the eigenvectors corresponding to a particular eigenvalue form a subspace.
It is called the eigenspace of the corresponding eigenvalue.

Any eigenvalue λ of matrix M(n × n) satisfies the equation Det(λI −M) = 0. This is a polynomial of
degree n and will have n roots. But these roots might not be real. So the matrix might or might not have
n eigenvalues. The situation is much simpler in complex (C) field. Where all the n roots exist and precisely
correspond to the n eigenvalues.

The polynomial Det(λI −M) = 0 is called the characteristic polynomial of M .

Theorem 1. Given a matrix P of full rank, matrix M and matrix P−1MP have same eigenvalues.

Proof. Suppose λ is an eigenvalue of P−1MP , we need to show that it is an eigenvalue for M too. Say λ is
an eigenvalue with eigenvector v. Then,

P−1MPv = λv ⇒M(Pv) = λPv.

Hence Pv is an eigenvector with eigenvalue λ.
The opposite direction follows similarly. Given an eigenvector v of M , it can be shown that P−1v is an

eigenvector of P−1MP .
P−1MP (P−1v) = P−1Mv = λP−1v

Hence proved.

Exercise 10. Show that matrix M and MT have same eigenvalues.
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