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Last time we looked at generalized inequalities on cones. These inequalities transform to the membership
question in a proper cone. It turns out that for solving these convex optimization problems over the cones,
we need to understand the membership question. In today’s lecture there will be various theorems which
will help in this matter.

1 Krein-Milman Theorem

We studied two different characterizations of a bounded polytope last time. One, it was the bounded feasible
region of a bunch of inequalities and equalities. Second, it can be expressed as the convex hull of its vertices.
The equivalence of these two characterizations is known as Krein-Milman Theorem

Theorem 1. Krein-Milman: Any convex, compact and non-empty set A ∈ Rn can be written as the convex
hull of its extreme points.

Notice that the theorem is much more general and talks about any compact, convex set and not just
bounded polytopes. In the case of bounded polytopes, the number of extreme points will be finite. We will
not cover the proof of this theorem. But lets look at one of the nice implications.

Lemma 1. Suppose, given a linear function f : Rn → R, f = aTx and a bounded polytope S. There always
exist an extremal point of S which attains the minimum/maximum value of f on S.

Remark: Note that there can be other points, not extremal, which also attain the maximum or minimum.

Proof. We will show the proof for maximum, same works for minimum value. Suppose the maximum is
attained at x0 ∈ Rn and the vertices of S are x1, · · · , xk. By Krein-Milman, S is the convex hull of its
vertices. Hence,

x0 = θ1x1 + · · ·+ θkxk, ∀i, θi ≥ 0,
∑
i

θi = 1

.
Because f is linear,

f(x0) = θ1f(x1) + · · ·+ θkf(xk)

.
This shows that there exists i ∈ 1, 2, · · · ,m, s.t., f(xi) ≥ f(x0) (why?). Hence the maximum will be

attained at one of the vertices.

Notice the importance of this theorem. Suppose, given a feasible region which is a bounded polytope and
a linear function which we need to optimize. This lemma tells us that the optimal value will lie on a vertex
and hence cuts the search space by a large amount.

2 Hyperplane separation theorems

There is a general theorem that two disjoint convex sets can be separated by a hyperplane. Depending on
the convex sets the separation can be different.
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Fig. 1. Convex sets and hyperplanes separating them

Fig. 2. Non-convex sets
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Formally a hyperplane aTx− b = 0 separates sets C and D, if

aTx− b ≥ 0, ∀x ∈ C and aTx− b ≤ 0, ∀x ∈ D

. The same is called a strict separation if strict inequalities hold on both sides.

aTx− b > 0, ∀x ∈ C and aTx− b < 0, ∀x ∈ D

.

Exercise 1. Give an example of two sets which cannot be separated.

2.1 Two convex sets

Theorem 2. Given two convex sets C and D, which are mutually disjoint. There always exists a hyperplane
aTx− b = 0 separating them. Hence aTx− b ≥ 0, ∀x ∈ C and aTx− b ≤ 0, ∀x ∈ D.

Notice that the separation here is not strict.

Exercise 2. Construct two convex sets where separation cannot be strict.

Proof. Sketch: We show the proof sketch for two closed sets, such that, one of them is compact. In this case
actually strict separation can be achieved. Since one set is compact and other is closed, there exist two points
c ∈ C and d ∈ D whose distance is minimum among any pair of points, one from C and one from d. We
can take the perpendicular bisector between c and d and that will be the separating hyperplane. If it is not
the separating hyperplane then there exists a point of C (or D) on the hyperplane. Then we can construct
a point closer to d (or c) from the set C (or D).

2.2 A point and a convex set

Our next example will be a point and a convex set. In this case we get a strict separation by the hyperplane,
s.t., point lies on one side of the hyperplane and the set on the other side. Here strict means both the point
and the set are disjoint with the hyperplane.

Theorem 3. Given a closed convex set C and a point p. There always exist a hyperplane H = aTx − b
which strictly separates them. So aT p− b > 0 and aTx− b < 0, ∀x ∈ C.

The proof follows by constructing a small enough ball around point p which is compact and disjoint with
C. How will you get strict separation.

Corollary 1. Any closed convex set is the intersection of all the half spaces which contain it.

Proof is left as an exercise.

2.3 Farkas lemma: A point and a cone

A special case of the previous section is the separation between a point and a finitely generated cone.
Remember that a finitely generated cone is convex. The proof follows from previous theorems, but it will be
instructive to see another proof of this.

Lemma 2. Farkas: Given a set of vectors x1, · · · , xk ∈ Rn (equivalently C ∈ Rn×k) and a point b ∈ Rn.
Exactly one of the following two conditions are satisfied.

1. ∃θ ∈ Rk
+ (θ in positive orthant), such that, b = Cθ.

2. ∃a ∈ Rn, such that, aT b > 0 and aTC ≤ 0 (entrywise).
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Proof. It is clear that both conditions cannot be satisfied simultaneously. Because then,

0 ≥ aTC ⇒ 0 ≥ aTCθ ⇒ aT b > 0

, which is a contradiction.
Suppose b can’t be written as the conic combination of columns of C, i.e., first condition does not hold.

Then look at cone generated by columns of C. It is finitely generated cone and hence by Weyl’s theorem, it
can be expressed as a bunch of inequalities,

Cone(x1, · · · , xk) = {x : Ax ≤ 0}

. Because b is not a member of this cone, there exists a row of A whose inner product with b is strictly
positive (call it ai). Then aTi b > 0 and ∀i, aTi xi ≤ 0⇒ aTi C ≤ 0.

Exercise 3. Interpret Farkas lemma as a hyperplane separation theorem. What do you know about this
hyperplane?

This theorem converts the membership question in a cone to finding a separating hyperplane question.
The question of membership in the cone is of real importance in convex optimization. It can be shown that
optimization over a cone can be done using polynomially many calls to membership/separation algorithm
for the cone.
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