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This week we will see many other properties of convex sets. These properties make convex sets special
and are the reason why convex optimization problems can be solved much more easily as compared to other
general optimization problems.

1 Intersections and unions of convex sets

Suppose we are given two convex sets S1 and S2. What happens when we take their intersection or union.
Intersection of two convex sets is convex. Consider two points in the intersection S1∩S2. They are contained
in the individual sets S1, S2. So the line segment connecting them is contained in both the sets S1, S2 and
hence in the set S1 ∩ S2.

The same argument can be extended to intersection of finite number of sets and even infinite number
of sets too. Since a polytope is an intersection of halfspaces and hyperplanes (linear inequalities and linear
equalities), it gives an easier proof that a polytope is convex.

But the same property does not hold true for unions. In general, union of two convex sets is not convex.
To obtain convex sets from union, we can take convex hull of the union.

Exercise 1. Draw two convex sets, s.t., there union is not convex. Draw the convex hull of the union.

2 Minkowski sum

We can define another operation on sets to form a new set. A Minkowski sum of two sets S1, S2 is the set
formed by taking all possible sums such that first vector is from S1 and second vector is from S2.

S1 + S2 = {x : x = x1 + x2, x1 ∈ S1, x2 ∈ S2}

It can be defined more generally for a finite family of sets too. In general, Minkowski sum of two convex
sets is convex (prove it). Actually it behaves really nicely with respect to taking convex hull operation.

Conv(S1 + S2) = Conv(S1) + Conv(S2)

Exercise 2. Is this property satisfied by intersection?

3 Projection

Exercise 3. Suppose a set S ⊆ RmRn is convex. Prove that T = {x1 ∈ Rm : (x1, x2) ∈ S} is convex.

4 Product

Exercise 4. Suppose sets S1 ⊆ Rm, S2 ⊆ Rn are convex. Prove that S1 × S2 = {(x1, x2) : x1 ∈ S1, x2 ∈ S2}
is convex.
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5 Preservation under affine functions

Lets define a class of functions called affine functions. A function f : Rn → Rk is called affine iff f = Ax+ b
for some A ∈ Rm×n, b ∈ Rm.

This affine functions act nicely on convex sets. It is easy to show that the image of a convex set under
affine functions is convex. Given S is convex, set T = {x : Ay + b = x, y ∈ S} is also convex. It turns out
that even the pre-image under an affine function is convex.

Theorem 1. Given a set S to be convex, the set

T = {x : Ax+ b = y, y ∈ S}

is also convex.

Proof. Suppose there are two elements t1, t2 of T . Then there exist s1, ss, s.t., At1 + b = s1, At2 + b2 = s2.
Taking the convex combination of these two equalities,

A(θt1 + (1− θ)t2) + b = θs1 + (1− θ)s2.

Hence θt1 + (1− θ)t2 is in T for all 0 ≤ θ ≤ 1.

6 Generalized inequalities

We learned about cones as an example of convex sets. Most of the cones encountered in this course will be
a special subclass called proper cones. A cone C is proper iff

– C is convex.
– C is closed (it has boundaries). Remember that a cone is not bounded.
– C has nonempty interior.
– C is pointed, i.e., it does not contain any line.

In case of real numbers, one is interested in ≥,≤ kind of ordering. Using a proper cone, we can define an
ordering (partial) over the elements of Rn. A partial ordering on a cone C can be defined as

x �C y ⇔ x− y ∈ C

Exercise 5. What is the cone for our usual ordering of real numbers ≤,≥?

Why did we define these generalized inequalities in terms of cones and not say polytope. Why did we take
cone to be of special form. The reason is that we need this new ordering to be similar to old familiar ordering
over real numbers. This new ordering is going to satisfy many properties we are familiar with (though they
are not going to satisfy all properties, for one this ordering is partial).

– If x �C y and u �C v, then x+ u �C y + v.
– Transitivity: if x �C y and y �C z then x �C z.
– If x �C y and θ ≥ 0, then θx �C θy.
– x �C x.
– If x �C y and y �C x, then y = x.
– If xi �C yi as i→∞ then x �C y, where x, y are respective limits.

We can define strict ordering � using the same idea, x �C y iff x − y ∈ Int(C). Here Int(C) is the
interior of the cone (Cone - points on the boundary of Cone). This strict ordering also has many similar
useful properties.

– If x �C y, then x �c y
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– If x �C y and u �C v, then x+ u �C y + v.
– If x �C y and θ ≥ 0, then θx �C θy.
– Important: If x �C y, then for small enough u, v, x+ u �C y + v.

Exercise 6. For all these properties, prove them and see what properties of cones did we use.

The idea is to allow these special inequalities in our optimization constraints. An optimization problem
over a cone C is a problem where the constraints are either equalities/ inequalities or generalized inequalities
over that cone. Intuitively, the properties of proper cones and convex sets allow the efficient solution of these
optimization problem. Semidefinite programming is optimization over cone called semidefinite cone.

Most of the material on generalized inequalities has been directly taken from Boyd and Vandenberghe
book. Detailed description of this topic can be found in the book of Boyd and Vandenberghe.

7 Characterization of polytope

We saw last week that cones and bounded polytope has two representations. One in terms of linear inequalities
and one in terms of convex combinations (conic combination). There is a similar theorem for polytope.

Theorem 2. Let there be a polytope defined by a set of inequalities, P = {x ∈ Rn : Ax ≤ b}. Then there
exist vectors x1, · · · , xk ∈ Rn and y1, · · · , yl ∈ Rn, s.t.,

P = Cone(x1, · · · , xk) + Conv(y1, · · · , yl)

This is known as the Affine Minkowski-Weyl theorem. We will not do the proof of this theorem in
this course. Notice that now there are equivalent characterizations of cone/polytope/bounded polytope in
terms of convex/conic hulls or linear inequalities. It is instructive to remember the special forms of linear
inequalities and hulls required to make these shapes.
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