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We last time looked at the definition of convex sets. Today we look at some of the examples which will
be really useful in the future.

1 Polytopes and Polygons

We will mostly be interested in linear equations and linear inequalities as our constraints. We already
discussed the set of points which satisfy the set of all constraints is called the feasible region. When this
constraints are linear inequalities and linear equalities the feasible region is called a polytope. Mathematically,
S is a polytope iff

S = {x : aTi x− bi ≤ 0 i = 1, 2, · · · ,m and cTi x− di = 0 i = 1, 2, · · · , p}

A bounded polytope in two dimensions is called a polygon.

Exercise 1. Prove that the polytope is a convex set.

Exercise 2. What are the polytopes in one dimension?

Geometrically, polytopes are intersections of hyperplanes and halfspaces. Remember that a polytope
could be bounded or unbounded. Intuitively, polytopes have vertices, edges, planes and hyperplanes as their
bounding surface. A bounded polytope can be thought of as the convex hull of its vertices. Actually a
bounded polytope can have an alternate definition as the convex hull of a finite set of points. The statement
that these two definitions (the previous one and the original definition in terms of equalities and inequalities)
are the same is known as Minkowski-Weyl theorem. The proof of that is out of the scope of this course. Now
we look at a special case of polytope.

We haven’t defined vertices/extremal points formally till now. It is intuitively clear that a vertex is a
corner of the polytope. Formally, A vertex of a polytope is the point which cannot be expressed as the convex
combination of two different points in the polytope. This implies that vertex is not inside of any line segment
joining two points in the convex set.

We saw that the convex hull of a triangle and a point inside the triangle is triangle itself. Suppose we
are given a convex set and we want to find out the minimal set whose convex combinations will generate the
entire set. By the definition of vertices, all vertices should be in this minimal set. It turns out that the for a
bounded polytope this set (set of all vertices) is enough.

Exercise 3. Suppose S = Conv(x1, · · · , xk). Prove that xi is not extremal/vertex if and only if it can be
written as the convex combination of other xj ’s.

2 Simplex

Given k + 1 points x0, x1, · · · , xk ∈ Rn, s.t., {x1 − x0, x2 − x0, · · · , xk − x0} are linearly independent. Then
the convex hull of these k + 1 points Conv(x0, x1, · · · , xk) is called a simplex. It is a generalization of the
idea of a triangle or tetrahedron.

Theorem 1. A simplex is a polyhedron.
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Proof. Sketch: We construct an n×k matrix M = (x1−x0, x2−x0, · · · , xk−x0). Any element in the simplex
can be represented as

x = x0 +Mθ (1)

Here θ ∈ Rk is positive and inner product of θ with all 1’s vectors is less than 1. Now M being full rank
implies that there exist matrix N which can diagonalize M . We can multiply Eq. 1 by matrix N and get the
linear inequalities and equalities by removing θ.

Exercise 4. Fill in the details of the proof.

3 Cones

We have seen sets made by vertices, lines, line segments. Now we look at sets generated by rays. A set is
called a cone iff every ray from origin to any element of the set is contained in the set. Hence the set C is a
cone iff for every x ∈ C we have θx ∈ C, θ ≥ 0.

Notice that a cone is not a set which has all possible conic combinations of all its points. Remember
the notion of conic combination. A conic combination of vectors x1, · · · , xk ∈ Rn is any vector of the form
θ1x1 + · · ·+ θkxk for θ1, · · · , θk ≥ 0.

The previous paragraph implies that a cone is not necessarily convex (Give example of a cone which is
not convex). A set which is a cone and is convex is called a convex cone. In this course we will mostly be
concerned with convex cones. Mathematically, a convex cone C is a set where for all ∀x1, x2 ∈ C and θ1, θ2 ≥
0, θ1x1 + θ2x2 ∈ C. So we get the definition, A cone is convex iff it contains all the conic combinations of
its elements.

Convex hulls and cones are closely related.

Exercise 5. Take xi’s as row vectors. Prove,

x ∈ Conv(x1, x2, · · · , xk)⇔ (x, 1) ∈ Cone((x1, 1), · · · , (xk, 1))

Note: Some authors define cones as sets closed under positive scalar multiplication. We have defined cones
as sets closed under non-negative scalar multiplication.

Clearly the set Cone(x1, x2, · · · , xk) := {θ1x1 + · · ·+ θkxk : ∀i θi ≥ 0, xi ∈ Rn} is a cone. It is called a
finitely generated cone because it is generated by finite number of vectors. A convex finitely generated cone
is also a polytope. Next theorem gives a characterization of a finitely generated cone.

Theorem 2. Weyl’s Theorem: A non-empty finitely generated convex cone is a polytope.

Proof. Suppose the set of generators for cone C are x1, · · · , xk. We can define a matrix X which has xi’s as
the columns. Then the cone C can be written as

C = {x : x = Xθ, θ ∈ Rk
+}

Converting equalities into inequalities

C = {x : x−Xθ ≤ 0, Xθ − x ≤ 0, − θ ≤ 0

Now θ can be eliminated from these inequalities using something knows as Fourier-Motzkin elimination.

Lemma 1. Let Ax ≤ b be a system of m inequalities in n variables. This system can be converted into
another equivalent system A′x ≤ b′ with n − 1 variables and polynomial in m many inequalities. Here
equivalent means any solution x of old system will be a solution of the new system ignoring the removed
variable. Also given any solution x of new system (A′x ≤ b′), we can find a solution (x0, x) of old system.

2



Proof. Suppose the removed variable is x0. We divide all the inequalities into three sets depending upon
whether the coefficient of x0 is positive (P ), negative (N) or zero (Z). Divide the inequalities in P and N
by the modulus of the coefficient of x0. The inequalities in the new system are the inequalities from Z and
every inequality of the form pi + nj ≤ 0, pi ∈ P, nj ∈ N .

Exercise 6. Prove that this construction works.

With the θ eliminated from the system of equations which define the cone, we get

C = {x : Ax ≤ 0}

Hence it is a polytope.

Note: A general polytope is Ax ≤ b and we will see that a finitely generated cone is Ax ≤ 0. We defined
these sets polytopes, cones, simplex etc.. They are interesting because the feasible regions of our optimization
problems will be intersections of these various kind of convex sets.
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