
Lecture 20: Concentration inequalities using SDP

Rajat Mittal?

IIT Kanpur

Today, we cover another application of optimization in the field of probability. Concentration inequalities
bound the amount of deviation from some value of interest by a random variable. The common examples
are Markov’s inequality and Chebyshev’s inequality. The focus will be to come up with such inequalities
and their generalization using optimization. Most of the material here is taken from the book of Boyd and
Vandenberghe.

1 Probability theory

This section will introduce the notions of probability space and random variables. For a detailed description
and definition of these concepts please refer to any standard probability theory textbook.

A sample space is the set of outcomes of an experiment. A probability distribution is an assignment of
probability (a number between 0 and 1) to some collection of subsets (sigma field), such that the total
probability is 1. The reader is warned that these definitions are not rigorous and are only intended to remind
the intuition behind the actual definitions.

A random variable X is a function from the sample space to the set of real numbers. Using the probability
distribution on the sample space the sets (−∞, x) (for x ∈ R) can be assigned a probability and is known as
the distribution function of the random variable.

The expected value of a random variable is the mean of the random variable weighted by probabilities.
For a discrete random variable which takes values in range R,

E(X) =
∑
x∈R

x Pr(X = x).

If the variable is continuous then integration is used in place of summation.
Concentration inequalities bound the probability of random variable being far away from the quantity of

interest (e.g. expected value). The simplest example being Markov’s inequality,

Pr(X ≥ a) ≤ E(X)

a
.

2 Optimization and concentration inequalities

Suppose X = {X1, · · · , Xm} is a set of random variables with range S ⊆ Rm. The information is given
about these random variables in terms of expectation value of functions fi : Rm → R, say ai = E(fi). We
can assume that the expectation of constant function f0(x) = 1 is always given and is equal to 1.

Suppose, we are interested in the probability of the random variable being in some set C ⊆ S. The
indicator function for set C is the function IC , s.t., IC(x) = 1 if x ∈ C and zero otherwise. The probability
of X in C is the expected value of this indicator function,

Pr(X ∈ C) = E(IC).

Taking the same idea as the one to construct a dual solution; if there exist variables yi such that∑
i yifi(x) ≥ IC(x) for all x ∈ S, then

∑
i yiai is an upper bound on E(IC) and hence on Pr(X ∈ C).

? Thanks to the book of Boyd and Vandenberghe



To get the best upper bound we need to minimize
∑
i yiai where yi’s are “feasible”. Hence the following

optimization can be made to find the best upper bound,

min y0a0 +
∑
i yiai

s.t. y0 +
∑
i yifi(x) ≥ 1 ∀x ∈ C

y0 +
∑
i yifi(x) ≥ 0 ∀x ∈ S (1)

Every feasible solution of the above equation gives a bound on the value of Pr(X ∈ C). In other words,
every feasible solution gives rise to a concentration inequality.

2.1 Example

Consider the case when m = 1 and consider two functions f0, f1. The first function is the constant function
f0(x) = 1 and the second one is identity f1(x) = x. Suppose the expected value of a positive random variable
X is µ. We are interested in Pr(X ≥ a). The Eqns 1 transform to a linear program,

min y0 + µy1

s.t. y0 + ay1 ≥ 1

y0, y1 ≥ 0 (2)

Exercise 1. Show the steps which convert the general Eqns 1 to Eqns. 2 for the special case mentioned above.

Exercise 2. Show that the optimal value of the above linear program is min(1, µa ).

So the linear program gives the Markov’s inequality with the bonus insight that if µ
a ≥ 1 then a better

but trivial bound of 1 can be given.

2.2 Another example

Suppose for the set of random variables X = {X1, · · · , Xm}, the first and the second moment are given.

E(X) = a ∈ Rm E(XXT ) = Σ ∈ Rm×m

This means we are given the expected value of every Xi and the expected value of XiXj for every pair
(i, j). The matrix Σ is symmetric. In this case the linear combination of all the functions can be expressed
as ,

f(x) = xTPx+ 2qTx+ r.

The vector x represents the m random variables and r corresponds to the constant function. Then the
expected value of this linear combination can be calculated in terms of Σ and a.

Ef(x) = E(Tr(PxxT ) + 2qTx+ r) = Tr(ΣP ) + 2qTa+ r

This will be the objective function. For the constraints, f(x) ≥ 0 and f(x) ≥ 1, x ∈ C need to be
expressed. We assume that the C is the union of feasible regions of a bunch of inequalities.

C = {x : ∃i, s.t. , aTi x ≥ bi}

The constraint f(x) ≥ 0 is slightly easier. Call y =

(
x
1

)
.

f(x) = xTPx+ 2qTx+ r ≥ 0

⇔ yT
(
P q
qT r

)
y ≥ 0

⇔
(
P q
qT r

)
� 0
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The other condition can be expressed as,

aTi x ≥ bi ⇒ xTPx+ 2qTx+ r ≥ 1 for i = 1, · · · , k.

This can be equivalently expressed as,(
P q
qT r − 1

)
� λi

(
0 ai

2
aT1
2 −bi

)
for some λi ≥ 0

This can be proved using following theorem. We will not give a proof here (it can be found in the book
of Boyd and Vandenberghe, Appendix B.2). The intuition behind this theorem is strong duality and slater’s
condition.

Theorem 1. Let M,N be two symmetric matrices, s.t., xTMx ≥ 0 ⇒ xTNx ≥ 0. If there exist x0 for
which xT0Mx0 > 0, then

∃λ ≥ 0, such that N − λM � 0.

Hence the upper bound for Pr(X ∈ C) can be expressed as,

min Tr(ΣP ) + 2qTa+ r

s.t.

(
P q
qT r

)
� 0(

P q
qT r − 1

)
� λi

(
0 ai

2
aT1
2 −bi

)
∀i = 1, · · · , k

λi ≥ 0 ∀i = 1, · · · , k.

Hence the problem of getting an upper bound is converted into a semidefinite program. Notice that it
gives a lower bound on the Pr(X ∈ P ), where P is a polyhedra.
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