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The Lovasz theta number was introduced last time to find out upper bounds on the size of independent
set. For the case of perfect graphs (chromatic number is same as maximum clique size), the Lovasz theta
number of complementary graph gives us the maximum independent set size.

Though for general graphs it has been proved that Lovasz theta number is not a tight bound on the size
of maximum independent set size. In spite of this the theta function is useful because it is an SDP and using
SDP structure we can come up with lot of properties of independent set and chromatic number.

To remind, the Lovasz theta number for a graph G is given by following SDP’s.

Primal

max
∑

(i,j)∈E Xij

s.t. Xij = 0 ∀(i, j) ∈ E∑
i∈V Tr(X) = 1

X � 0 (1)

Dual

minλ

s.t. λI −A � 0

Ai,j = 1 if i = j or (i, j) /∈ E (2)

1 Shannon capacity of a graph

Shannon introduced Shannon capacity of a graph to estimate the capacity of a channel with noise. Suppose
there is a channel and a list of symbols (say a, b, · · · ) which can be sent across the channel. Since the channel
is noisy, some of the pairs can be confused when transferred across the channel.

The effect of this noise can be modeled by a confusability graph G. The graph G has vertices for every
alphabet and there is an edge between two vertices if they can be confused by the receiver of the channel.
Clearly the maximum number of symbols which can be sent is the maximum independent set of this graph.

A better strategy would be to send multiple letters so that the chances of confusion are less, i.e., our
new symbol set is aa, ab, bc, · · · . In this case the new confusability graph will be related to the original
confusability graph. The relation is given by strong product of a graph.

Given two graphs G1 = (V1, E1), G2 = (V2, E2), the strong product G1×G2 is defined as the graph with
vertex set V1 × V2. The edges are defined by relation,

(i1, i2), (j1, j2) ∈ E(G1 ×G2)⇔ (i1 = j1 ∨ (i1, j1) ∈ E1) ∧ (i2 = j2 ∨ (i2, j2) ∈ E2).

Exercise 1. Convince yourself that the confusability graph when we send two symbols is the strong product
of confusability graph when we send just one symbol.

Note: The strong product can be thought of as a product where edges are present in the new graph if for
all co-ordinates there is an edge or both the vertices are equal. There is a weak product also where in the
newly formed graph the edges are present if for any co-ordinate there is an edge in the original graph. The
strong product and weak product are useful in many applications and not just Shannon capacity.

With this product the number of symbols we can send are α(G2). To normalize the cost (sending two
symbols instead of one), we compare the square root of α(G2) with α(G).

Exercise 2. Show that α(G) ≤
√
α(G2). In general show that if k ≤ l then k

√
α(Gk) ≤ l

√
α(Gl).
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Fig. 1. Example of a confusability graph

This idea can be expanded further and we can consider the channel capacity as the maximum of k
√
α(Gk).

The Shannon capacity is defined by,

lim
k→∞

k

√
α(Gk).

2 The product property of theta number

From the definition of Shannon capacity, it is clear that the quantity θ(Gk) is interesting. So, the natural
question is how θ(G1 ×G2) is related to θ(G1), θ(G2).

Theorem 1. For graphs G1 and G2,

θ(G1 ×G2) = θ(G1)θ(G2).

We will not show the proof but comment that one of the way to show this theorem is using the structure
of SDP’s. In general it can be asked, given the description (C,Ai, b) of SDP, what happens when the to the
optimal value if a product between two SDP’s are taken. The product of SDP’s can be defined in many ways,
but one of the most natural one is when we take tensor product of the respective parameters. This product
turns out to be useful in many applications.

Suppose the primal SDP’s are S1, S2 and their duals D1, D2. Denote the product primal SDP by S1⊗S2

and the dual of it by D(S1 ⊗ S2).The outline of the proof is,

1. Show that for the optimal solution X∗1 , X2∗ of S1, S2 respectively, X∗1 ⊗ X∗2 is the solution of S1 ⊗ S2

with the objective value Opt(S1) Opt(S2). This implies Opt(S1 ⊗ S2) ≥ Opt(S1) Opt(S2).

2. Show that for the optimal solution y∗1 , y2∗ of D1, D2 respectively, y∗1 ⊗ y∗2 is the solution of D(S1 ⊗ S2)
with the objective value Opt(D1) Opt(D2). This implies Opt(D(S1 ⊗ S2)) ≥ Opt(D1) Opt(D2).

3. Using strong duality for all the SDP’s Opt(S1 ⊗ S2) = Opt(S1) Opt(S2).

Exercise 3. Use the above strategy to show the theorem.

Using this product property of Lovasz theta number (Thm. 1),

Exercise 4. Show that the Shannon capacity of the graph is less than θ(G).
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Lovasz showed the Shannon capacity of the pentagon (C5) using the above exercise. He showed that
θ(C5) =

√
5 =

√
α(C2

5 ). Hence,√
α(C2

5 ) ≤ lim
k→∞

k

√
α(Ck

5 ) ≤ θ(C5) =
√
α(C2

5 ).

So the Shannon capacity of pentagon is
√

5.

3 Theta number of complementary graph

There was another formulation of Lovasz theta number in the last lecture.

minc,{vi}maxi(
1

cT vi
)2

s.t. ‖c‖ = ‖vi‖ = 1 ∀i
vTi vj = 0 ∀(i, j) /∈ E (3)

Using this characterization we can prove,

Theorem 2. For a graph G and its complement Ḡ,

θ(G)θ(Ḡ) ≥ n.

Proof. Suppose c, {vi} and d, {wi} are the optimal vectors for G and Ḡ respectively. Then the unit vectors
vi ⊗ wi and vj ⊗ wj are orthogonal to each other iff i 6= j. So,

1 ≥
∑
i

((c⊗ d)T (vi ⊗ wi))
2 =

∑
i

(cT vi)
2(dTwi)

2.

From the fact that c, {vi} is feasible for θ(G),

1 ≥
∑
i

(dTwi)
2

θ(G)
⇒ θ(G) ≥

∑
i

(dTwi)
2.

Now using the fact that d, {wi} is feasible for θ(Ḡ),

θ(G) ≥
∑
i

1

θ(Ḡ)
⇒ θ(G)θ(Ḡ) ≥ n.
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