
Lecture 13: Semidefinite programming

Rajat Mittal

IIT Kanpur

Semidefinite programming is a class of convex optimization where optimization function is linear and the
constraints are either linear equalities/inequalities or generalized inequalities with respect to semidefinite
cone. Hence, it is linear programming with the additional power of generalized inequalities for positive
semidefinite cone (Sn).

1 Definition

A semidefinite program in standard form looks like,

max C ◦X
s.t. Ai ◦X = bi, ∀i = 1, · · · ,m

X � 0.

Here X is the variable matrix of dimension n × n. The matrix C is called the cost or objective matrix.
Ai’s are the constraint matrices. C and Ai’s have the same dimension as X (n× n). bi’s are scalars and the
vector b (with bi) as components is known as constraint matrix. Remember that A ◦ B = tr(ATB) is the
hadamard product between two matrices.

Many of the standard tricks used in linear programming to convert non-standard form into standard form
can also be used here. For example, converting inequalities into equalities, changing minimum to maximum
and change of variables.

Suppose the program is,

max Tr(X)

s.t. X =

(
1 x
1 x

)
� 0.

Exercise 1. Find the value of this semidefinite program.

Look at another similar program,

inf /min x1

s.t.

(
x1 1
1 x2

)
� 0.

Exercise 2. Find the value of this semidefinite program.

2 Equivalent definitions

2.1 Form with positive semidefinite constraints

Another standard form for semidefinite programming is:

min bT y

s.t.
∑m

i=1 yiAi − C � 0

Let us take a look at why these two forms are equivalent. Suppose the matrix
∑

i yiAi − C = Z. This
will be our new variable matrix. Now the variables will be Z and scalars yi’s. The linear constraints will be
∀ i, j; zij =

∑
k yk(Ak)ij (where zij are the entries of matrix Z). Hence the program becomes,

min bT y

s.t. ∀ i, j; zij =
∑

k yk(Ak)ij

Z � 0

It almost looks like the standard form but variables y do not occur in the semidefinite constraint. Notice
the old trick of converting unrestricted variables to positive variables. Say yi = y′i − y′′i and y′i, y

′′
i ≥ 0. Then

these variables y′i, y
′′
i can be put in a separate block and included in the semidefinite constraint.

min bT y

s.t. ∀ i, j; zij =
∑

k(y′k − y′′k)(Ak)ij

Z =

Z 0 0 0 0 0 0
0 y′1 · · · 0 0 0 0

0
...

. . .
... 0 0 0

0 0 0 y′m 0 0 0
0 0 0 0 y′′1 · · · 0

0 0 0 0
...

. . .
...

0 0 0 0 0 0 y′′m

� 0

Exercise 3. Prove that we don’t need to put the explicit constraint that off-diagonal entries (blocks) are
zero.

2.2 Gram matrix formulation

We know that any positive semidefinite matrix can be written as the gram matrix of vectors. Suppose X
can be expressed as the gram matrix of u1, · · · , un ∈ Rk. Then the semidefinite program looks like,

max
∑

ij Ciju
T
i uj

s.t.
∑

ij A
(k)
ij u

T
i uj = bk, ∀k = 1, · · · ,m

Notice that we don’t need the X � 0 constraint now. This form can be also be understood as the program
where constraints and objective functions are linear in inner-products of the vectors. This form is really useful
when we want our variables in optimization problem to be able to assume vector values.

Remark: This is not a linear program, since constraints are on the inner-products.

3 Examples

3.1 Minimizing the maximum eigenvalue

Suppose we are give a matrix M(x), which depends affinely on the variables in x. That means every entry
in M(x) can be written as an affine function of variables in x (say M(x)ij = a1x1 + · · · + anxn + b). The
problem is to minimize the maximum eigenvalue of M(x) over all x, i.e.,

min
x

max
i
λi(M(x))

2

Clearly this is not in the standard form of SDP. The trick here is to introduce another variable η to change
min max to only min. Suppose λmax(M) represents the maximum eigenvalue of M , then

min η

s.t. η ≥ λmax(M(x))

Now use the fact that λmaxI −M(x) � 0. Hence,

min η

s.t. ηI −M(x) � 0

This is one of the alternative form discussed in the last section (why?). Here the variables are (η, x).

Exercise 4. Write an SDP to find the maximum eigenvalue of a matrix M .

3

	Lecture 13: Semidefinite programming

