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Positive semidefinite matrices are symmetric matrices whose eigenvalues are non-negative. They can also
be thought of as the gram matrix of a set of vectors. Today’s lecture will look at their special properties and
the cone generated by them.

1 Properties of semidefinite matrices

1.1 Principal submatrix

A principal submatrix P of a matrix M is obtained by selecting a subset of rows and the same subset of
columns. If M is positive semidefinite then all its principal submatrices are also positive semidefinite.

This follows by considering the quadratic form xTMx and looking at the components of x corresponding
to the defining subset of principal submatrix. The converse is trivially true.

Exercise 1. Show that the determinant of a positive semidefinite matrix is non-negative. Hence, show that
all the principal minors are non-negative. Actually the converse also holds true, i.e., if all the principal minors
are non-negative then the matrix is positive semidefinite.

1.2 Diagonal elements

If the matrix is positive semidefinite then its diagonal elements should dominate the non-diagonal elements.
The quadratic form for M is,

xTMx =
∑
i,j

Mi,jxixj . (1)

Here xi’s are the respective components of x. If M is positive semidefinite then Eqn. 1 should be non-
negative for every choice of x.

By choosing x to be a standard basis vector ei, we get Mii ≥ 0, ∀i. Hence, all diagonal elements are
nonnegative and tr(M) ≥ 0. If x is chosen to have only two nonzero entries, lets say at i and j position, then
Eqn. 1 implies,

Mi,j ≤
√
MiiMjj ≤

Mii +Mjj

2
.

Where the second inequality follows from AM-GM inequality. This shows that any off diagonal element is
less than the diagonal element in its row or in its column.

2 Schur’s complement

Given a 2× 2 block matrix,

M =

(
A B
C D

)
,

the schur complement of the matrix D in M is A−BD−1C. This gives a criteria to decide if a 2×2 symmetric
block matrix is positive definite or not.



Theorem 1. Suppose M is a symmetric 2× 2 block matrix,

M =

(
A B
BT D

)
.

It is positive definite iff D and the schur complement A−BD−1BT , both are positive definite.

Proof. Notice that,

M =

(
I BD−1

0 I

)(
A−BD−1BT 0

0 D

)(
I BD−1

0 I

)T
(2)

It is known that, (
I BD−1

0 I

)−1
=

(
I −BD−1
0 I

)
.

Hence M = PTNP where P is invertible and N is a diagonal matrix. So M is positive definite if and only
if N is positive definite. It is easy to check when a block diagonal matrix is positive definite. That exactly
gives us the that D and the schur complement A−BD−1BT both have to be positive definite.

Exercise 2. Given a matrix,

M =

(
I B
BT I

)
,

and the condition B = BT . Show that it is positive definite iff I ±B � 0.

3 Positive semidefinite cone

Consider the vector space of symmetric n×n matrices, R
n(n+1)

2 . We focus on the set of positive semidefinite
matrices in this space.

It was seen that if M,N are positive semidefinite, then αM +βN is also positive semidefinite for positive

α, β. Hence, the set of positive semidefinite matrices is a convex cone in R
n(n+1)

2 . The cone is denoted Sn.
If M � 0 then −M is not positive semi-definite. So the cone Sn does not contain a line. If we look at the

positive definite matrices. They form the interior of the cone. To prove this, we show that for any positive
definite matrix M , there exist a ball of size ε centered at M and contained in the cone of positive semidefinite
matrices.

Theorem 2. If given an n×n matrix M � 0 (positive definite). Then, M − εN � 0 for small enough ε and
all symmetric N whose norm is 1.

Proof. The norm of N is 1, i.e., N •N = 1. So every entry of N is at-most 1 (Exercise: Why ?). For every
unit vector v, every element is bounded by 1 too. So vTNv =

∑
i,j vivjNij ≤ n2.

Exercise 3. The choice ε = λn

2n2 will work, where λn is the least eigenvalue of M .

Identity is positive definite, so interior is not empty.
Notice that we did not take the space of all n × n matrix. In that case the set of positive semidefinite

matrices will not be solid.
Hence, Sn is a convex cone that does not contain a line and has non-empty interior. This implies that

the cone Sn is proper. Define the generalized inequality with respect to this cone.

M � N ⇔M −N � 0

The positive semidefinite cone is generated by all rank one matrices xxT . They form the extreme rays
of the cone. The positive definite matrices lie in the interior of the cone. The positive semidefinite matrices
with at least one eigenvalue zero are on the boundary.
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3.1 Self dual cone

The inner product in this space is the • operation between matrices.

A •B =
∑
i,j

AijBij = tr(ATB)

The dual cone of Sn is the cone S ′n, s.t.,

S ′n = {M : M •N ≥ 0, ∀N ∈ Sn}

Consider the hadamard product of two positive semidefinite matrices. It was proved in the last class that
M ◦N � 0.

Exercise 4. If M ◦N � 0, prove that M •N ≥ 0.

Hence every positive semidefinite matrix is part of the dual cone S ′n. It implies

Sn ⊆ S ′n. (3)

Now consider a symmetric matrix M /∈ Sn. There exist at least one negative eigenvalue λ and an
eigenvector v corresponding to it. So,

0 > λ = vTMv = M • (vvT ).

This implies that M /∈ S ′n. Hence,
S ′n ⊆ Sn. (4)

From Eqn. 3 and Eqn. 4, we get S ′n = Sn. The cone of positive semidefinite cone is a self dual cone.
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