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1 Spectral decomposition

In general, a square matrix M need not have all the n eigenvalues. Some of the roots of det(λI −M) might
be complex. The eigenvectors corresponding to different eigenvalues need not be orthogonal.

A normal matrix is defined to be a matrix M , s.t., MMT = MTM . The eigenspaces corresponding to
these matrices are orthogonal to each other, though the eigenvalues can still be complex.

Theorem 1. Spectral theorem: For a normal matrixM ∈ L(V ), there exists an orthonormal basis x1, · · · , xk
of V , s.t.,

M =

n∑
i=1

λixix
∗
i .

Here ∀i λi ∈ C.x∗i is the adjoint of xi.

Exercise 1. Show that xi is an eigenvector of M with eigenvalue λi.

Remark: Notice that y∗x is a scalar, but yx∗ is a matrix.
Remark: The λi’s need not be different. If we collect all the xi’s corresponding to a particular eigenvalue

λ, the space spanned by those xi’s is the eigenspace of λ.

Proof. Idea: First it will be shown that given an eigenspace S (say corresponding to eigenvalue λ), the matrix
M acts on the space S and S⊥ separately. That is Mv ∈ S if v ∈ S and Mv ∈ S⊥ if v ∈ S⊥. This implies
that M is a linear operator on S⊥.

Since S is an eigenspace, Mv ∈ S if v ∈ S. For a vector v ∈ S,

MMT v = MTMv = λMT v.

This shows that MT preserves the subspace S. Suppose v1 ∈ S⊥, v2 ∈ S, then MT v2 ∈ S. So,

0 = vT1 (MT v2) = (Mv1)T v2.

Hence Mv1 ∈ S⊥. Hence, matrix M acts separately on S and S⊥.
From the fundamental theorem of Algebra, there is at least one root of det(λI −M) = 0. Start with the

eigenspace of that root (Exercise: Show that it is not empty). From the previous paragraph we can restrict
the matrix to orthogonal subspace and find another root. Using induction, we can divide the entire space
into orthogonal eigenspaces.

Exercise 2. Show that if we take the orthonormal basis of all these eigenspaces, then we get the required
decomposition.

Clearly the spectral decomposition is not unique (essentially because of the multiplicity of eigenvalues).
But the eigenspaces corresponding to each eigenvalue are fixed. So there is a unique decomposition in terms
of eigenspaces and then any orthonormal basis of these eigenspaces can be chosen.

Remark: It is also true that an eigenvalue is a root of characteristic polynomial with multiplicity k, then
its eigenspace is of dimension k. The eigenvalues and eigenvectors have more structure if we look at specific
classes of normal matrices.
? Thanks to John Watrous’s course notes, IQC, Waterloo.



1.1 Symmetric matrix

A matrix is symmetric if M = MT . It is clearly normal. All the roots of the characteristic polynomial are
real and hence all eigenvalues are real. The eigenvectors can be complex or real. But an orthonormal basis
of real eigenvectors can always be chosen.

This statement is true for a more general class of matrices called hermitian matrices (analog of symmetric
in complex domain).

Conversely if all the eigenvalues are real and there exist a real orthonormal basis of eigenvectors then
the matrix is symmetric (from Spectral theorem). A matrix of the form BTB for any matrix B is always
symmetric.

The sum of two symmetric matrices is symmetric. But the multiplication of two symmetric matrices need
not be symmetric.

Exercise 3. Give an example of two symmetric matrices whose multiplication is not symmetric.

1.2 Orthogonal matrix

A matrix M is orthogonal if MMT = MTM = I. In other words, the columns of M form an orthonormal
basis of the whole space. Orthogonal matrices need not be symmetric, so their eigenvalues can be complex.
For an orthogonal matrix M−1 = MT .

Orthogonal matrices can be viewed as matrices which do change of basis. Hence they preserve the angle
(inner product) between the vectors. So for orthogonal M ,

uT v = (Mu)TMv.

Exercise 4. Prove that the absolute value of the eigenvalues of an orthogonal matrix is 1.

If two matrices A,B are related by A = M−1BM , then they are unitarily equivalent. Unitary matrices
are analog of orthogonal matrices in complex domain. If two matrices are unitarily equivalent then they are
similar.

Spectral theorem can be stated as the fact that normal matrices are unitarily equivalent to a diagonal
matrix. The diagonal of the diagonal matrix contains the eigenvalues.

1.3 Positive semidefinite matrix

A matrix M is positive semidefinite if it is symmetric and all its eigenvalues are non-negative. This class is
going to be one of the most important class of matrices in this course. If all eigenvalues are strictly positive
then it is called a positive definite matrix.

2 Singular value decomposition

Singular value decomposition is one of the most important factorizations of a matrix. The statement says,

Theorem 2. Given a linear operator M in L(V,W ). There exists a decomposition of the form:

M =

r∑
i=1

siyix
T
i

Where x1, · · · , xr (called right singular vectors) and y1, · · · , yr (called left singular vectors) are orthonormal
basis of V and W respectively. The numbers s1, · · · , sr (called singular values) are positive real numbers and
r itself is the rank of the matrix M .
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Remark: Note that this statement is easy to prove if we don’t need any condition on yi’s. Any basis of V
will be sufficient to construct such a decomposition (why?). We can even choose all singular values to be 1
in that case. But it turns out that with the singular values we can make the yi’s to be orthonormal.

The statement of the theorem can also be written as M = A∆B∗, where A ∈ L(W ), B ∈ L(V ) are
orthogonal matrices and ∆ is the diagonal matrix of singular values. With this interpretation, any linear
operation can be viewed as rotation in subspace V then scaling the standard basis and then another rotation
in W subspace.

The proof of singular value decomposition follows by applying spectral decomposition on matrices MMT

and MTM . The eigenvectors of MMT are left singular vectors and eigenvectors of MTM are right singular
vectors of M . The eigenvalues of MMT or MTM are the singular values of M .

Exercise 5. Prove that MTM and MMT have the same set of eigenvalues (hint: use singular value decom-
position).

3 Alternate characterization of eigenvalues of a symmetric matrix

The eigenvalues of a symmetric matrix M ∈ L(V ) (n× n) are real. So they can be arranged in the order,

λ1 ≥ · · · ≥ λn.

By spectral theorem, the eigenvectors form an orthonormal basis. Say the eigenvectors are v1, · · · , vn,
where vi is the eigenvector with eigenvalue λi. Any vector v ∈ V with length 1 can be written as,

v =
∑
i

θivi,
∑
i

θ2i = 1.

This implies that the quadratic form vTMv is,

vTMv =
∑
i

λiθ
2
i .

Hence the maximum value of quadratic form vTMv is λi when v = vi. So, the maximum eigenvalue λi
is the maximum value of the quadratic form vTMv. The eigenvector v1 is the vector which maximizes the
quadratic form.

The same argument tells us that λ2 is the maximum value achieved by vTMv for all v orthogonal to v1.
Generalizing, λi is the maximum value achieved by vTMv, when v is orthogonal to v1, · · · , vi−1.
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