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1 Mathematical optimization

Most of the problems in this world are optimization. You have to maximize (happiness/peace/money) or
minimize (poverty, grief, wars etc.). Unfortunately we are not solving any of those problems. On a smaller
scale optimizing time in the production cycle of some industry, optimizing tax in a tax-return, optimizing
length in a tour etc. are mathematical optimization problems we encounter in our daily life.

Formally, any problem of the form:

min f0(x)

s.t. fi(x) ≤ bi i = 1, 2, · · · ,m

is called an optimization problem. Here fo is the objective/optimization function and fi ≤ bi are called
constraints. The task here is to find the max/min value of f0(x), s.t., x satisfies all the constraints. The set
of all x which satisfy all the constraints is called the feasible region.

S = {x : fi(x) ≤ bi i = 1, 2, · · · ,m}

A vector x∗is called “optimal”/solution if it has the smallest objective value among all vectors which
satisfy the constraints. So for any z ,s.t., fi(z) ≤ bi, we know, f0(z) ≥ f0(x∗).

– Take our/mine favorite example of world peace, x-actions, f0- peace function, fi- many, dont kill every-
one/anyone

– Other example: Satisfiability, given a boolean satisfiability formula,(x1 ∨ x2 ∨ x4), (x̄2 ∨ x4 ∨ x1), · · ·

max # of clauses satisfied

s.t. x ∈ {0, 1}n

Remember that optimal solution need not be unique. One of the special case is when variables have
symmetry, in this case some kind of permutation can be applied to get multiple optimal solutions.

2 Examples

– Portfolio optimization – Every variable represents amount spend in each asset. Constraints might be on
budget/availability/expected return. Objective is to minimize risk.

– Data fitting – The task is to find some model from some class of models which fit the data. What are
the constraints, objective function, variables.

3 Classes of optimization problems

In general, we are interested in classes of optimization problems which can be solved easily or have specific
properties. Different classes differ in what kind of constarints/objective functions are allowed for them. For
example, Linear programming. (constraints and objective function has to be linear). We will study linear
programming in detail later.

A class of problems is interesting if:
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– Many real world problems which can be modeled as the problem in the class
– Problems in the class are “easily” solved
– Problems in the class have nice properties (Duality), which can help us understand the structure. (more

details later)

Our emphasis here is to learn some classes of optimization problem (Linear programming/ Semidefinite
programming) and see how they can be applied to solve problems in computer science (complexity). There is
a nice theory of how can we solve this problems (interior point, ellipsoid, simplex), but we won’t care about
that.

3.1 Least square problem

A least square problem is the one which does not have any constraint and the objective functions looks like∑
i(a

T
i x − bi)2. Here x ∈ Rn is a variable with n coordinates. a′is are vectors with n dimension and biare

scalars.

min fo(x) = ||Ax− b||22 =
∑
i

(aTi x− bi)2

Here A is a matrix of dimension k × n. aTi are the rows of the matrix. One of the examples of such
problem could be Parameter estimation, given a bunch of hyperplanes find the point closest to them.

This least square problem can be solved efficiently, when A is of full rank. We can prove that the best
vector has to satisfy the equation (ATA)x = AT b.

Proof. Lets look at two spaces concerning A (matrix of dimension m× n).
R(A) = {y ∈ Rm :∼ Ax = y}(Range of A) and N(AT ) = {y ∈ Rm :∼ AT y = 0}(Null space of AT ).
Exercise: Show that R(A)⊕N(AT ) = Rm.
We can decompose b = b1 + b2,s.t., b1 ∈ R(A), b2 ∈ N(AT ). Since Ax − b1 ∈ R(A), it is orthogonal to

b2for any x. The objective function can be written as ||Ax− b1||2 + ||b2||2. So the optimal xsatisfies, Ax = b1.
This implies Ax = b− b2 ⇒ (ATA)x = AT b.

Note: There is a nice way in which we can check if a particular problem is a least square problem or
not. We will go through the basics later, which will enable us to prove this. Least square problems can be
generalized too.

– Weighted least square problems:

min fo(x) = ||Ax− b||22 =
∑
i

wi(a
T
i x− bi)2

– Regularization:

min fo(x) = ||Ax− b||22 =
∑
i

(aTi x− bi)2 + ρ
∑
i

x2i

.
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