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We studied the set Zp in detail for number theory. As mentioned earlier, the set can be thought of as
another number system where we can add, subtract, multiply and divide. You have already studied rational
number system, real number system and complex number system where addition, subtraction, multiplication
and division is well defined.

In a very informal sense, we want to say that all sets having these nice operations (having addition,
subtraction etc.) are special and share interesting properties. These special sets, with their nice operations,
will be called fields and we will study these abstract object and there properties.

Finite fields, whose size is finite, are a very important sub-class of fields for computer science and math-
ematics (Zp is an example). Later in this note, finite fields and its properties will be studied in detail. We
will finish with an application of finite fields in error correcting codes.

1 Fields

We have repeatedly said that elements in Zp can be added, subtracted, multiplied and divided. Notice that
subtraction is inverse of addition and division is the inverse of multiplication. First, let us formulate the
meaning of, addition can be performed over a set S.

Exercise 1. For example, our formulation should say that addition is possible over Zn but not in Z∗n. Could
you now think of a formulation?

One way to capture it is by these two properties. We can say that addition can be performed over S if

1. Addition is allowed: for all a, b ∈ S, a+ b ∈ S and a+ b = b+ a.
2. Subtraction is allowed: There exist inverse for every element a called −a and identity 0 ∈ S, such that,

a+ 0 = 0 + a = a and a+ (−a) = (−a) + a = 0.

Clearly addition is possible over Zn,Z,R,C (with identity as 0). Multiplication is not possible, why?. We
can remove 0 and then multiplication will be possible on the sets Zp, rational numbers, real number and
complex numbers (with 1 as an identity).

Exercise 2. Show that addition is possible over set of all n× n matrices. What is the identity?

You can think of many other examples, we will get to study them later.
Let us again look at the set Zp where addition as well as multiplication (removing 0) is possible. To

collect some interesting properties of Zp,

– Addition can be performed over Zp,
– Multiplication can be performed over Zp \ {0},
– Distributivity holds, i.e., a(b+ c) = ab+ ac for all a, b, c ∈ Zp.

Since Zp had these properties, we were able to do modular arithmetic (define a new number system) over
the set Zp. Notice that these properties are also true for set of rational numbers(Q), set of real numbers(R)
and set of complex numbers(C).

Exercise 3. What is wrong with Z?

? Thanks to Nitin Saxena for his notes from the previous iteration of the course.



The properties seem to abstract out the reason why Zp can be called special. Let us take the next step
and say that any set with two possible operations in the above sense is special (it will be called a field).
Formally,

Definition 1. The set F with the two operations + and × is a field, if,

– + can be performed over F . Say 0 is the identity with respect to + in F .
– × can be performed over F \ {0}.
– The two operations + and × follow the distributive law, i.e.,

a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c.

For simplicity of notation, we will call the two operations addition and multiplication (order is important).
Generally additive identity is denoted as 0 and the multiplicative identity as 1.

Exercise 4. Why are we excluding 0 when taking elements of F under multiplication?

Becauseofdistribution,a×(b+0)=a×b+a×0,impliesa×0=0.Can’thaveinverseof0.

Let us look at some of the examples of fields.

– Z is NOT a field.
– Q, R and C are fields.
– Zm is a field iff m is a . Ex: Fill in the blank.

Exercise 5. Show that if ab = 0 in a field than either a = 0 or b = 0.

One of the important sub case of fields is when they are finite, like the last example. Finite fields have
lot of applications in computer science. We will study one, to construct error correcting codes using finite
fields.

Let us move on to more properties of fields.

1.1 Characteristic of a field

The characteristic of a field F is the minimum n ∈ N, s.t., n1 = 0. Here n1 denotes the addition of the
multiplicative identity n times,

1 + 1 + · · ·+ 1︸ ︷︷ ︸
n times

.

In general, the characteristic might not exist for field (say R). In that case we say that characteristic is
zero. For the case of finite field though, the characteristic is always a positive number.

Exercise 6. Why is the characteristic of a finite field also finite?

Suppose n is a characteristic of a finite field. If n is composite, say n = pq, then (p1)(q1) = 0. Since F is
a field, from exercise in the previous section, either p1 = 0 or q1 = 0, establishing contradiction. So we get
the theorem,

Theorem 1. The characteristic of a finite field is always a prime.

Exercise 7. Show that p1 = 0 implies pf = 0 for all f ∈ F.

pf=f+f+···+f=f(1+1+···+1)=0

One of the example of field of characteristic p is the set Zp with modular addition and multiplication.
We call this field Fp.

Note 1. There are other finite fields with characteristic p but we will not study them in this course.
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2 Polynomials over fields

You are used to thinking of a polynomial (like 4x2 + 2x + 6) as an expression of coefficients (in Z,R etc.)
and variables (x, let us worry about only one variable).

The purpose of this section is to give a formal treatment to constructing polynomials and the rules over
them. We will re-derive many properties of polynomials with the only assumption, coefficients arise from a
field.

A polynomial over a field F is a formal sum anx
n + · · ·+ a1x+ a0, where the coefficients come from the

field F. The set of all polynomials (in one variable) over a field F is denoted by F[x].
The degree of the polynomial is the highest power of x with a non-zero coefficient. We will call a polynomial

to be monic, if its leading coefficient is 1.
We can define the addition and multiplication over polynomials (in F[x]) so as to match the definitions

learned till now.
Given two polynomials a(x) = anx

n + · · ·+a1x+a0 and b(x) = bnx
n + · · ·+ b1x+ b0, their sum is defined

as,
a(x) + b(x) = (an + bn)xn + · · ·+ (a1 + b1)x+ (a0 + b0).

Note 2. If the degree of two polynomials is not equal, we can introduce extra zero coefficients in the poly-
nomial with the smaller degree.

For multiplication, given two polynomials a(x) = anx
n + · · ·+a1x+a0 and b(x) = bmx

m + · · ·+ b1x+ b0,
their product is defined as,

p(x) = a(x)b(x) = (anbm)xn+m + · · ·+ (a2b0 + a1b1 + a0b2)x2 + (a0b1 + a1b0)x+ (a0b0).

More formally, the product is defined using distribution and the fact that (axi)(bxj) = (ab)xi+j . Remem-
ber that the calculations over coefficients are done in the field F.

Exercise 8. What is the degree of a(x)b(x) if the degree of a(x) is n and b(x) is m?

Exercise 9. Suppose a(x) = 2x3 + 2x2 + 2 is a polynomial in F3[x], what is a(x)2?

After defining addition and multiplication we would like to define division and gcd of polynomials. Notice
that we will follow the exact same path as numbers to end up with unique factorization theorem.

Theorem 2. Division: Given two polynomials f(x) and g(x), there exist two unique polynomials called
quotient q(x) and remainder r(x), s.t.,

f(x) = q(x)g(x) + r(x).

where the degree of r(x) is less than the degree of g(x).

Proof. Existence: Suppose the degree of f(x) is less than degree of g(x) then q(x) = 0 and r(x) = f(x). This
will be the base case and we will apply induction on the degree of f(x).

Say f(x) = fnx
n + · · ·+f1x+f0 and g(x) = gmx

m + · · ·+g1x+g0 with m ≤ n. Multiply g by fng
−1
m xn−m

and subtract it from f .

f(x)− fng−1m xn−mg(x) = (fn−1 − gm−1fng−1m )xn−m−1 + · · · = l(x).

So l is a polynomial with lower degree and by induction it can be written as l(x) = q′(x)g(x) + r(x).
This implies f(x) = (fng

−1
m xn−m + q′(x))g(x)+r(x). So we can always find q(x) and r(x) with the condition

given above. This method is called long division and is the usual method of dividing two numbers.

Exercise 10. What is the relation between the usual division between two integers you learnt in elementary
classes and long division.

Replacexby10.
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Uniqueness: Suppose there are two such decompositions f = q1g + r1 and f = q2g + r2 (notice that we
have suppressed x for the sake of brevity). Then subtracting one from another,

0 = (q1 − q2)g + (r1 − r2).

Exercise 11. Show that this implies q and r are unique.

Using division algorithm, we can define Euclidean GCD algorithm.

Let’s define greatest common divisor (gcd) first. Given two polynomials f, g, their greatest common divisor
is the highest degree polynomial which divides both f, g.

The important observation for Euclidean gcd is, if f = gq1 + r1 then

gcd(f, g) = gcd(g, r1).

Without loss of generality we can assume that f has higher degree than g and hence r has lower degree
than g and f . We can continue this process, say g = q2r1 + r2. Then the task reduces to finding the gcd of r1
and r2. Ultimately we get two polynomials, s.t., rn | rn−1. Then rn is the gcd of f and g. If rn is a constant,
we say that the gcd is 1.

Exercise 12. Show that any polynomial which divides both f and g will also divide rn mentioned above.
Show that rn divides both f and g.

From the previous exercise it is clear that rn is one of the gcd (it divides both and has highest degree).

Exercise 13. Is gcd unique?

onlyuptomultiplicationbyaconstant

Exercise 14. Imp: Show that using Euclidean algorithm for gcd, if gcd(f, g) = d then there exist two poly-
nomials p, q, s.t., d = pf + qg.

Let’s define primes in the ring of polynomials, they are called irreducible polynomials (irreducible elements
of F[x]). A polynomial f is irreducible iff it is not constant and there does NOT exist two non-constant
polynomials g and h, s.t., f = gh.

Exercise 15. Given that a monic polynomial g is irreducible, show, any polynomial f is divisible by g or
their gcd is 1. This property can be re-stated, any irreducible polynomial can’t have a non-trivial gcd (trivial
gcd: 1 or the polynomial itself).

With this definition, we can start finding the factors of any polynomial f . Either f is irreducible or it
can be written as gh. If we keep applying this procedure to g and h. We get that any polynomial f can be
written as,

f = cg1g2 · · · gk.

Where gi’s are irreducible monic polynomials and c is a constant in the field F.

Can two such factorizations exist? It turns out, like in the case of natural numbers, this factorization is
unique up to ordering of polynomials. For the sake of contradiction, suppose there are two such factorizations
cg1 · · · gk and ch1 · · ·hl.

Exercise 16. Why can we assume that the constant is same for both factorizations?
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We know that since g1 is irreducible it can’t have a non-trivial gcd with either h = h1 · · ·hl−1 or hl. We
will also show that it can’t have gcd 1 with both. Suppose gcd(hl, g1) is 1. Then using Euclidean gcd,

1 = phl + qg1 ⇒ h = pf + qg1h.

Since g1 divides both terms on the R.H.S, it divides h. Hence the gcd of h and g1 is g1. So g1 either
divides hl or h = h1 · · ·hl−1.

If it divides h1 · · ·hl−1, we can further divide it and ultimately get that g1 divides hi for some i. Since
both g1 and hi are irreducible and monic, we get g1 = hi. Cancelling g1 from both sides,

g1(g2 · · · gk − h1 · · ·hi−1hi+1 · · ·hl) = 0⇒ g2 · · · gk − h1 · · ·hi−1hi+1 · · ·hl = 0.

Exercise 17. Prove the above implication.

Continuing the same way, it can be proven that both factorizations are same up to a permutation.

Theorem 3. Unique factorization: Given a polynomial f it can be written in a unique way as a product of
irreducible monic polynomials up to ordering.

f(x) = cg1(x)g2(x) · · · gk(x)

Where c is a constant in the field F (the leading coefficient of f) and gi’s are irreducible monic polynomials.

Exercise 18. The order of going from division algorithm to Euclidean GCD to unique factorization is impor-
tant. Where else have you seen this?

There is an easy way to find out whether a degree one polynomial x− a divides a polynomial f or not.
Substitute a in the polynomial f (we call the evaluation f(a)), if it evaluates to zero then x − a divides f
otherwise not. If f(a) = 0, we say that a is a root of f . The proof of this is given as an exercise.

Using the factorization theorem we can show that any polynomial of degree d can have at most d roots.
The proof of this theorem is left as an exercise.

Theorem 4. Given a polynomial p of degree d over a field F. There are at most d distinct roots of p.

3 Cyclic structure of Fp

Observe that every element of Fp can be obtained by adding 1 enough number of times. Such an element is
called an additive generator of Fp. There is a nice cyclic structure to elements of Fp under addition.

Exercise 19. Show that every element of Fp is an additive generator except 0.

What about multiplication? If we remove 0, can every other element be obtained as a power of a single
element?

Try it for F3, F5 and F7. How many generators are there?
It turns out that every field Fp has at least one multiplicative generator (actually all finite fields). A

multiplicative generator of a field F is also called a primitive element of F.
Before we prove the existence of a primitive element, let us simplify the question.
Look at the consecutive powers of an element a ∈ Fp. The values 1, a, a2, · · · need to repeat as all of them

are elements of a finite set. Suppose, the first collision is at powers i and j, ai = aj . This will imply ai−j = 1.
The previous argument shows that the first value which repeats is 1, and all values before that are distinct.

The first exponent e such that ae = 1 is called the order of the element a in Fp. So, the consecutive powers
of a look like,

1, a, a2 · · · ae = 1, ae+1 = a, ae+2 = a2, · · ·

Exercise 20. Let e be the order of a. Show that an = 1 iff e | n.
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Exercise 21. Suppose the order of a in a group G is d. Show that for element ak, order is d
gcd(d,k) .

If all elements, except 0, can be represented as powers of a, then the order of a should be p−1. Conversely,
if the order is p− 1 then a generates every element except 0. Why?

So, we need to show that for all p, there exist an a whose order is p− 1 (a is a primitive element).

Theorem 5. For any prime p, there exist φ(p− 1) primitive elements of Fp.

Proof. Let’s call the multiplicative part of our field to be F ∗ = Zp \ {0}, then |F ∗| = p − 1. Since, for all
elements x of F ∗,

xp−1 − 1 = 0

So, there are exactly p− 1 roots of the above equation (why exactly p− 1?).

For any element x, the order d divides p− 1, hence x is a solution of p(d) = xd − 1 for some d | (p− 1).
Notice that the polynomial p(d) has at most d roots.

For the sake of contradiction, suppose there are no primitive elements. Then, every element has order
strictly less than p − 1. We would like to show that there are not enough roots (p − 1) for the polynomial
xp−1 − 1.

So we would like to show, ∑
d<(p−1),d|(p−1)

d < p− 1 (1)

Note 3. There is a strict inequality d < p− 1 in the summation index as well as the inequality.

Exercise 22. Show that this is not true for some p.

The reason why the strategy above does not work is, we are counting lot of elements multiple times.
A solution of p(d) will be a solution of p(2d), p(3d), · · · . There is a decent chance that some of numbers
2d, 3d, · · · might be divisors of p− 1 too.

So, say e(d) is the number of elements with order exactly d. Hence, instead of Eq. 1, the contradiction
will be shown by proving the equation, ∑

d<p−1,d|(p−1)

e(d) < p− 1 (2)

This equation follows from the following two claims. The proof of first one is left as an exercise, other
will be proved here.

Note 4. φ(d) is the number of elements co-prime to d.

Claim. For a number n,
∑

d|n φ(d) = n.

Proof hint: For any number k ≤ n, look at gcd(k, n) and k
gcd(k,n) .

Claim. If there exist an element of order d then φ(d) = e(d).

Proof. Suppose, the element with order d is x. Then, d roots for xd − 1 are precisely x0, x1, · · · , xd−1 (these
are the d roots and there are at most d roots). The order of xk is d

gcd(d,k) .

Hence, the elements with order d are precisely xk, s.t., gcd(d, k) = 1. So e(d) = φ(d).
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Using the claims,

p− 1 =
∑

d|(p−1),d≤p−1

φ(d) >
∑

d|(p−1),d<p−1

e(d). (3)

The inequality follows because e(d) ≤ φ(d) and we have assumed e(p− 1) = 0. So, the equation 2 follows
from non-existence of primitive element and we get a contradiction.

By definition of e(d),
∑

d|(p−1) e(d) = p− 1. Hence, there should be equality in the second part of Eq. 3.

That means, there are exactly φ(d) elements of order d in a field Fp where d | p − 1. Specifically, there are
φ(p− 1) primitive elements for the field Fp.

4 Error correcting codes

We will look at another application, constructing error correcting codes. Again, the problem is similar to
cryptography, where we want to transmit a message on an unreliable network. The difference is, the network
is noisy and not unsecure. In other words, there is no adversary (Eve) but random changes in the message can
happen due to the noise in the environment. Instead of encrypting the data into ciphertext and decrypting
it, we will encode the message into a codeword and decode it back into the message.

m mc'c
Encode

Transmission
with Errors Decode

Fig. 1. Error correction

4.1 Basics of error correcting codes

The message m for the setting will be considered as a string of length k over an alphabet Σ. So, m will be
an element of Σk. This message will be encoded into a codeword c of a bigger length, it will be an element
of Σn.

When transmitted over a noisy channel, some letters of c might be changed (we will assume a bound
on it, otherwise coding won’t be possible) and we will obtain a faulty codeword c′. The task is to design a
coding mechanism, such that, m can be obtained even from c′.

Note 5. The recovery will only be possible if only a few letters of c gets changed.
In a nutshell, coding is an injective function E : Σk → Σn. Given a c′ which is close to E(m) (say, only t

letters changed), we can recover m efficiently. The set of all codewords, of total size |Σ|k, is called the code
C.

Exercise 23. Can be function E be surjective?

One of the easiest choice for a code is the repetition code, you just send the message multiple times and
take the majority output. Though n will be really large in this case. Our job is to design better codes.

The natural choice for alphabet is the binary one, {0, 1}, which can be also be thought of as F2. We will
assume that the alphabet Σ is equal to Fp for some prime p. So, encoding is a mapping E : Fk

p → Fn
p .

Note 6. This provides us with the flexibility of adding two codewords place-wise.
To formalize the notion of distance between two elements of Σn (c′ and c mostly), we define Hamming

distance. The Hamming distance between c and c′ is the number of places where they differ. To give an
example, if t letters get changed under transmission, then the Hamming distance between c and c′ is t.
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Exercise 24. Consider F7, what is the Hamming distance between 123456 and 132456. What about 112256
and 221165?

2and6

The distance of a code C is defined to be the minimum hamming distance between any two codewords
of the code C. If the distance is d with k length string going to n length string, it is called a (n, k, d) code.

Exercise 25. Why is the distance important?

Suppose the distance of C is large, more than 100. If we know that the transmission changes at most 50
places, then we can recover the message. For every faulty codeword c′ there is at most one codeword c ∈ C.

Exercise 26. Why is this true?

IftherearetwovalidcodewordswithHammingdistanceatmost50fromc′thentheHamming
distancebetweenthemislessthanequalto100.

This shows that if the distance is d, we can correct errors of size less than d/2. Though, this might
require lot of time and space (keeping the elements near to codewords). We generally look for codes which
have efficient coding and decoding procedure.

In any case, we need to find codes with large distance. What can we achieve?

Exercise 27. Given n what is the best distance possible? What is the best k possible?

From the previous exercise, it is clear that there is a trade-off between k and d. Given n, we want to keep
both k and d high. Though, it seems that increasing one decreases other. Let us look at the best possible d
given n and k in an (n, k, d) code.

Theorem 6 (Singleton bound). For any (n, k, d) code, d ≤ n− k + 1.

Proof. If we look at the first k− 1 coordinates of every codeword, at least two codewords will have identical
first k−1 letters (Pigeonhole principle). These two codewords can have distance at most n− (k−1), proving
the bound.

We will see a construction in next section where d = n−k+ 1 based on finite fields. Not just that, it also
allows us to encode and decode easily.

4.2 Reed-Solomon codes

The Reed-Solomon codes were given in 1960 and used the polynomials defined over finite fields. Before we
show the codes, let us look at a fundamental property of polynomials.

Exercise 28. Can two polynomials, both of degree less than k, have same evaluations at k distinct points?

No.Thedifferenceofthesetwopolynomialswillbeapolynomialwithdegreelessthankbutmore
thankroots.

Interpolation: Given k distinct elements x1, · · · , xk and their evaluations y1, · · · , yk; Interpolation constructs
a polynomial p, such that,

p(xi) = yi ∀ i ∈ {1, 2, · · · , k}.

The idea is,

– construct a polynomial which takes value 1 at say x1 and 0 at every other xi,
– then combine k such polynomials.

Exercise 29. Can you find a polynomial of degree less than k which has value 1 at x1 and 0 on all other xi’s?
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The following polynomial achieves this,

p1(x) = Πi 6=1

(
x− xi
x1 − xi

)
.

This allows us to construct the polynomial with p(xi) = yi for all i.

p(x) =

k∑
i=1

yipi(x).

You should convince yourself that p(x) satisfies the required conditions.

Construction: Every message m = a0a1 · · · ak−1 ∈ Fk
p is thought of as a polynomial m(x) = a0 + a1x+ · · ·+

ak−1x
k−1 of degree less than k. The codeword for m is simply the evaluation of m(x) at n distinct points of

the finite field,
c = m(β1)m(β2) · · ·m(βn).

Two such codewords can’t agree at more than k − 1 positions, otherwise there will be two polynomials
of degree less than k with exact same evaluations at k distinct points. This implies that the distance d of
the code is d = n− k + 1.

Encoding requires us to evaluate the polynomial at all points of the finite field and is efficient. Decoding
is again based on the properties of these polynomials and linear algebra. We strongly encourage the students
to read about decoding on their own.
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