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We will move on to the next topic in discrete mathematics called number theory. Number theory studies
the properties of natural numbers and is considered one of the most beautiful branches of mathematics; it
is also known as the queen of mathematics.

It is one of the earliest branch of mathematics (another one is Geometry), with ample evidence that it
was studied in old civilizations like India, China and Mesopotamia. Most of them developed similar ideas
and methods independently, some of which we are going to study.

Many famous mathematician, like Pythagoras, Aryabhatta and Diophantus in the earlier times and Gauss,
Tao, Bhargava in the recent times, have worked in this field. We will start with the basics of this field and
then see some important concepts: Modular arithmetic, Fermat’s little theorem and Chinese remaindering.

In this lecture note, numbers means natural numbers or integers depending upon the context.

1 Basics

We will start with the most basic primitive of division between two numbers. Division algorithm says that
given two numbers a and b, we can divide a by b obtaining quotient q and remainder 0 ≤ r < b:

a = qb+ r .

Eg. 101 = 7 · 14 + 3.

Exercise 1. Show that the quotient and the remainder are unique if we assume that the remainder is less
than b and greater than equal to 0.

Leta=qb+r=q′b+r′,implyingthat(q−q′)b+(r−r′)=0.Thelattergivesb|(r−r′),butwe
hadassumedthat0≤r,r′<b.

A number b divides a if the remainder is zero. We denote it by b | a . Similarly, b - a denotes that b does
not divide a. If b divides a then a is a multiple of b. Eg. 7 - 101, 7|105.

With the definition of divisibility, we can define the greatest common divisor (GCD). The GCD of two
numbers a and b is defined as the biggest number which divides both a as well as b. It is also denoted by
gcd(a, b).

One of the important cases is when gcd(a, b) = 1, i.e., there is no common factor between a and b. In
this case, we say that a and b are coprime to each other.

Exercise 2. How can you calculate the GCD of two numbers?

1.1 Euclid’s GCD algorithm (c.300 BC)

Euclid’s GCD algorithm is one of the earliest, most elementary and most important algorithms in the world
of mathematics. It gives a recursive way to calculate the GCD.

Suppose we are given two numbers a, b s.t. a ≥ b ≥ 0. The algorithm gcd(a, b) is given below.
The correctness of the procedure relies on the fundamental fact that if a = qb + r, then gcd(a, b) =

gcd(b, r).

Exercise 3. Can you prove this?

gcd(a,b)=gcd(qb+r,b)=gcd(r,b).

? Thanks to Nitin Saxena for his notes from the previous iteration of the course.



if b = 0 then
Output a

end
if b = 1 then

Output 1
end
Compute a = qb+ r by the division algorithm. Output gcd(b, r) .

Algorithm 1: GCD algorithm

To take an example, let us compute the GCD of 64 and 26.

gcd(64, 26)→ 64 = 2× 26 + 12

gcd(26, 12)→ 26 = 2× 12 + 2

gcd(12, 2)→ 12 = 6× 2 + 0

gcd(2, 0)→ 2.

(1)

This shows that gcd(64, 26) = 2. In general, the equations will look like,

gcd(a, b)→ a = q1 × b+ r1

gcd(b, r1)→ b = q2 × r1 + r2

...

gcd(rk−2, rk−1)→ rk−2 = qk × rk−1 + rk

gcd(rk−1, rk)→ rk−1 = qk+1 × rk + 0

gcd(rk, 0)→ rk.

(2)

In this case gcd(a, b) will be rk.

Exercise 4. Show that the remainder at least halves after every two steps of Euclid’s algorithm.

Exercise 5. What can you say about the number of steps in Euclid’s algorithm?

Hint:It’srelatedtotheFibonaccisequence!

Exercise 6. Write the pseudocode of the other version of Euclid’s algorithm in which we halve the smaller
number each time, i.e. we use a = qb+ r where |r| ≤ b/2. How many steps will it take?

Notice that r1 can be written as an integer combination of a, b, i.e., r1 = c1a+ c2b for some integers c1, c2
using the first equation. Similarly r2 can be written as an integer combination of b, r1 and hence a, b.

Keeping track of these coefficients (i.e. by induction), ultimately we can write the gcd(a, b) = rk as the
integer combination of a, b.

Theorem 1 (Bézout’s identity). For integers a, b, there exist integers α, β, such that,

gcd(a, b) = α · a+ β · b . (3)

It is clear from the argument before that these coefficients can be obtained by keeping track of coefficients
in Euclid’s algorithm. This is called the extended Euclidean algorithm.

Exercise 7. Show that if α, β satisfy Eqn. 3, then α+rb, β−ra also satisfy the same equation for any integer
r.

Using Theorem 1, we can prove the following lemma.
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Lemma 1. Let gcd(a, b) = 1. If a | bc then a | c.

Proof. We know that there exist k, `, such that,

1 = ka+ `b .

Multiplying both sides by c, we get
c = kac+ `bc .

Since a divides both the terms on the right hand side, a divides c too.

Using Lem. 1, we can restrict the choice of α and β in Bezout’s identity.

Theorem 2. For integers a > b > 1, we know that there exist integers α, β which satisfy gcd(a, b) = α·a+β·b.
Let a′ := a/ gcd(a, b) and b′ := b/ gcd(a, b), then there exists exactly one pair (α, β), such that,

0 ≤ α ≤ b′ − 1 and − a′ + 1 ≤ β ≤ 0 .

Note 1. A similar proof can be given for any two integers a and b. We assumed a > b > 1 to simplify the
statement and the proof of the theorem.

Proof. Since a > b > 1, the GCD is a positive number.
For convenience we will work with the coprime numbers a′ := a/ gcd(a, b) and b′ := b/ gcd(a, b), as defined

in the theorem. The above identity can be written as:

1 = αa′ + βb′ .

We can ensure 0 ≤ α < b′, by dividing α by b′ (say α = qb′+ r), using the remainder (r) and accordingly
changing β (to β − qa′). Then, |βb′| = |αa′ − 1| < |b′a′|. Thus, |β| < a′.

Exercise 8. Show that β is negative.

α,a,barepositive.

To show the uniqueness, suppose there exist two pairs α1, β1 and α2, β2 in the above range. Then,

(α1 − α2) · a′ = (−β1 + β2) · b′ .

By Lemma 1, we get that b′|(α1−α2). Since the difference is smaller than b′, we deduce it to be zero. Hence,
(−β1 +β2) is also zero. This contradiction implies the uniqueness of (α, β) in the range [0, . . . , b′−1]× [−a′+
1, . . . , 0] .

The first goal for us would be to prove that every number has a unique prime factorization (fundamental
theorem of arithmetic).

1.2 Fundamental theorem of arithmetic

From the definition of primes it is clear that we can start finding the factors of any number n. Either n is
prime or it can be written as mm′. If we keep applying this procedure to m > 1 and m′ > 1, we get that
any number n can be written as,

n = p1p2 · · · pk , for some k, where pi’s are primes.

Collecting the identical primes in one power, we get the factorization,

n = p`11 p
`2
2 · · · p

`k
k , for some k.
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This is called the prime factorization of n. It is not clear from the method above that this factorization is
unique.

Can two different prime factorizations exist? It turns out, this factorization is unique up to the ordering
of primes.

For the sake of contradiction, suppose there are two such factorizations p1 · · · pk and q1 · · · q`. By cancelling
the common primes, we can assume that no pi is equal to any qj .

We know that since p1 is a prime, it will divide either q = q1 · · · q`−1 or q` (Lemma 1). If it divides
q = q1 · · · q`−1, we can further divide q and ultimately get that p1 divides qi for some i.

This implies that p1 divides some qi. We know that p1 and qi are both primes. So, p1 = qi, which is a
contradiction. This gives the theorem,

Theorem 3 (Unique factorization). Given a number n, it can be written in a unique way as a product
of increasing primes,

n = p`11 p
`2
2 · · · p

`k
k ,where pi’s are primes.

2 Modular arithmetic

What is the day on the 184th day of an year, if it started with a Sunday?
What is the last digit of 264 ? This number is too big and it is very difficult to calculate the last digit by

computing the whole number 264. But, the problem becomes simpler if you realize that the last digit of 264

is the remainder of 264 when divided by 10. Denote the remainder of n when divided by 10 as r(n). Next
observation is, r(264) can be calculated by multiplying r(232) and r(232) and then taking the remainder by
10.

Exercise 9. Prove that r(ab) = r(r(a)r(b)) .

Applying this technique recursively (or iteratively), we get, r(28) = 6 ⇒ r(216) = 6 ⇒ r(232) = 6 ⇒
r(264) = 6. So the last digit of 264 is 6.

Exercise 10. Show that the last digit of 22
n

for any n ≥ 2 is 6.

The above trick of dealing with remainders is called modular arithmetic. There are many uses of modular
arithmetic in mathematics, computer science and even in chemistry. Please read the Wikipedia article for
more applications.

Let us study modular arithmetic more formally, following Gauß (1801).

Definition 1. We say a = b mod n iff a− b is divisible by n.

Note 2. a = b mod n is read as, a is congruent to b modulo n. Some books also use the notation, a ≡ b
mod n .

Exercise 11. Say, a is related to b iff a = b mod n. Show that it is an equivalence relation.

It is clear from the definition that if a = b mod n then a = kn+ b mod n for an integer k. For a number
b, the set {b + kn|k ∈ Z} is called the residue class of b modulo n and is denoted by the same notation b
mod n. (It is a set, technically called a coset.)

For example, the set {· · · ,−10,−7,−4,−1, 2, 5, 8, 11, · · · } is the residue class of 2 modulo 3.
The set of all residue classes of n is denoted by Zn. (Technically, we should use Z/nZ, but for this course

we use the former as a shorthand.)
Notice that any element c ∈ a mod n is of the form a + kn for some k. Using this definition, we can

define the operations like addition and multiplication on these modulo classes (in a natural way).

1. a mod n+ b mod n = a+ b mod n
2. (a mod n) · (b mod n) = ab mod n
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We can easily check that these definitions are consistent. For the first relation, this means, take any two
elements c ∈ a mod n and d ∈ b mod n. Then c+ d = e mod n for any e ∈ (a+ b) mod n.

Exercise 12. Check the consistency for the second relation.

For doing calculations, it generally makes sense to take the smallest non-negative number in a mod n
as the representative and do the calculations using that representative. The representatives will be in
{0, 1, 2, · · · , n − 1} and all of them will belong to different residue class. Whenever doing these modular
calculations (adding modulo n, multiplying modulo n), we can subtract any number of the form kn to keep
the calculation in the range {0, 1, 2, · · · , n− 1}.

Another way to say the same thing is, Zn = {0, 1, 2, · · · , n− 1}. Where it is understood that 0 stands for
the residue class of 0 modulo n and so on. You can add and multiply numbers in this set modulo n.

Exercise 13. What is the last digit of 239 ?

2
39

=2
32+4+2+1

=2·4·6·6
8

=2·4·6=8mod10.

Though you should be careful not to overuse your intuition of integer operations. For example, if ab = 0
mod n and a 6= 0 mod n, it does not mean that b = 0 mod n. Take a = 2, b = 3, n = 6 as an example.

This property also tells you that, in general, cancellation rule fails: ab = ac mod n 6⇒ b = c mod n.

Exercise 14. Solve the following questions,

1. What is 1235 mod 25?
2. Show that 2468× 13579 = −3 mod 25.
3. Show that 5n mod 10 = 5 for all n.
4. If n has representation xrxr−1 · · ·x1x0 in decimal, i.e., n = x0 + 10x1 + · · ·+ 10rxr. Then n = x0 + x1 +
· · ·+ xr mod 9.

5. Show that 9787× 1258 6= 12342046 by calculating both sides mod 9.
6. Suppose 3a = 0 mod p where p is a prime and 0 < a < p. What is p?
7. Find the number of integer solutions of 25x+ 31y = 6.
8. Find the number of integer solutions of equation x2 + y2 = 4z − 1.
9. How do you check if there is a solution to x2 = a mod p where p is a prime?

3 Inverse modulo n or how to solve linear equations in Zn

In the last section, we saw how to add, subtract and multiply elements of Zn (calculations modulo n). Let
us ask the next question, how to perform division in Zn? If we want to divide b by a, it is equivalent to solve
linear equation ax = b mod n.

Important note: if b = ac mod n need not imply x = c mod n. This is because n | a(x − c) implies
n | x− c only when gcd(a, n) = 1.

Exercise 15. Let gcd(a, n) = 1, how do we find the solution of ax = b mod n?

But if a and n are coprime to each other then there exists an integer k, s.t., ka = 1 mod n (Bézout’s
identity 3). The number k (more precisely the residue class of k modulo n) is called the inverse of a modulo
n and is denoted as a−1 mod n.

If inverse of a exists, then,

ax = b mod n ⇒ a−1ax = a−1b mod n ⇒ x = a−1b mod n .

Suppose n is a prime, then for any 0 < a < n, gcd(a, n) = 1. In this case, inverse exist for all a not
divisible by n. In other words, we have inverse of every element except 0 in Zn. Hence, while computing
modulo a prime p, we can divide (or cancel) freely.
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Exercise 16. Find the following quantities,

1. 2−1 mod 11 .
2. 16−1 mod 13 .
3. 92−1 mod 23 .

Exercise 17. Give an algorithm to find a−1 mod n. What previous algorithm can you use?

Exercise 18. Find the inverse of 25 modulo 23 using the algorithm above.

It is clear from previous paragraph that computations modulo a prime p are nicer because every element
in Zp (except 0) is coprime to p. We can prove many interesting properties in Zp, let us look at one of the
important theorems in number theory.

Theorem 4 (Fermat’s little theorem, 1640). Given a prime number p and an integer a coprime to p,

ap−1 = 1 mod p .

Proof. We will look at the set S = {a, 2a, 3a, · · · , (p − 1)a}. Since a is coprime to p, ka = 0 mod p if and
only if k 6= 0 mod p .

Exercise 19. Show that @s 6= t : sa = ta mod p .

The previous exercise shows that S has p − 1 distinct entries all ranging from 1 to p − 1. So S is just a
permutation of the set T = {1, 2, · · · , p− 1}. Taking product of all entries in S and T modulo p, we get,

a · 2a · · · (p− 1)a = 1 · 2 · · · (p− 1) mod p .

Cancelling the (p− 1)! term from both sides,

ap−1 = 1 mod p .

Exercise 20. Prove that ap = a mod p for any prime p and any integer a. This shows that exponentiation
in prime modulus is very special!

Exercise 21. For a composite n, and any a, what can you say about an mod n ?

Nothingspecial.However,wecanproveanalternatestatement.Forcoprimea,nmodifytheabove
prooftodeducethata

φ(n)
=1modn,whereφ(n)isthenumberofelementsin[n−1]thatare

coprimeton.Whena,nshareafactorthenthereisnogoodproperty.

4 Euler’s totient function φ

The case when n is not a prime is slightly more complicated. We can still do modular arithmetic with division
if we only consider numbers coprime to n.

For n ≥ 2, let us define the set,

Z∗n := {k | 0 ≤ k < n, gcd(k, n) = 1} .

The cardinality of this set is known as Euler’s totient function φ(n), i.e., φ(n) = |Z∗n|. Also, define
φ(1) = 1.

Exercise 22. What are φ(5), φ(10), φ(19) ?
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Clearly, for a prime p, φ(p) = p − 1. What about a prime power n = pk? There are pk−1 numbers less
than n which are NOT coprime to n (Why?). This implies φ(pk) = pk − pk−1. How about a general number
n?

We can actually show that φ(n) is an almost multiplicative function. In the context of number theory, it
means,

Theorem 5 (Multiplicative). If m and n are coprime to each other, then φ(m · n) = φ(m) · φ(n) .

Proof. Define S := Z∗m × Z∗n = {(a, b) : a ∈ Z∗m, b ∈ Z∗n}. We will show a bijection between Z∗mn and
S = Z∗m × Z∗n. Then, the theorem follows from the observation that φ(mn) = |Z∗mn| = |S| = |Z∗m||Z∗n| =
φ(m)φ(n).

The bijection ψ : S → Z∗mn is given by the map ψ : (a, b) 7→ bm + an mod mn. We need to prove that
ψ is a bijection. That amounts to proving these three things.

– The mapping is valid, i.e., if a ∈ Z∗m and b ∈ Z∗n then bm + an ∈ Z∗mn. This follows from the fact that
bm is coprime to n implies bm+ an is coprime to n. Similarly bm+ an is coprime to m. So bm+ an is
coprime to mn (and we use its residue representative in [mn− 1]).

– Mapping ψ is injective (one to one). Why?
If bm+ an = b′m+ a′n mod mn implies (b− b′)m+ (a− a′)n = 0 mod mn. The latter implies, using
coprimality of m,n, that n|(b− b′) and m|(a− a′). Thus, (a, b) = (a′, b′) in S.

– Mapping ψ is surjective (onto). Why?
Consider t ∈ Z∗mn. Compute k := tm−1 mod n. (Note: k ∈ Z∗n.) Since t = km mod n we can write
t = km+ `n. If need be, reduce ` to `′ mod m. This achieves both t = km+ `′n mod mn and `′ ∈ Z∗m.

These three properties of ψ finish the proof.

Exercise 23. Find numbers m,n such that φ(mn) 6= φ(m)φ(n).

Fundamental theorem of arithmetic implies that we can express any number as a product of prime powers.
By using Thm 5, we can calculate φ(mn), when φ(m) and φ(n) are given to us (m and n are coprime).

Theorem 6. If n = pk11 p
k2
2 · · · p

k`
` is a natural number. Then,

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·
(

1− 1

p`

)
.

Exercise 24. Prove the above theorem using Thm. 5.

For a positive integer n and a coprime a,

aφ(n) = 1 mod n.

This is known as Euler’s theorem and can be proven in a very similar manner to Fermat’s theorem.

5 Chinese remainder theorem

By finding inverses modulo n, we can solve a linear equation (congruence) modulo n. Let us take the next
step, how about a system of linear equations?

a1x = b1 mod m and a2x = b2 mod n.

If the equations need to have a solution, the gcd(a1,m) (gcd(a2, n) should divide b1 (b2) respectively.
Dividing by the GCD’s and then multiplying by the inverse of the coefficient of x, we get the equations of
type,

x = c1 mod m and x = c2 mod n. (4)
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Exercise 25. Suppose m,n are not coprime to each other. Show that there exist c1, c2 such that Eq. 4 have
no common solution.

For simplicity, we will assume that m,n are coprime to each other in Eq. 4. The general case is not very
difficult. Readers are encouraged to try it once they finish reading the solution of coprime case below.

Exercise 26. Show that if x is a solution of Eq. 4, then x+ r ·mn is also a solution for any integer r.

The above exercise shows that we are only interested in solutions modulo mn. We saw a mapping from
integers modulo m and integers modulo n to integers modulo mn in the last section.

(a, b)→ bm+ an mod mn.

The number c2m + c1n gives c2m remainder when divided by n and c1n when divided by m. Since m
and n are coprime to each other, m−1 mod n and n−1 mod m exist. This gives us an idea to modify the
mapping,

(c1, c2)→ c2m(m−1 mod n) + c1n(n−1 mod m) mod mn.

Exercise 27. Show that the number c2m(m−1 mod n) + c1n(n−1 mod m) leaves remainder c1 mod m and
c2 mod n.

This gives us one solution modulo mn, can there be two solutions to Eq. 4 distinct modulo mn. Suppose
x, y are two distinct solutions. The congruences 4 imply that x − y is divisible by both m and n. Since m
and n are coprime, x− y is divisible by mn.

Above discussion shows that if m,n are coprime then Eq. 4 has a unique solution modulo mn. This idea
can be generalized to more than 2 equations and is known as Chinese remainder theorem.

Theorem 7 (Chinese remainder theorem (CRT)). Let n1, n2, · · · , nk be positive integers which are
pairwise coprime to each other. Then, the system of congruences,

x = c1 mod n1
x = c2 mod n2

...
x = ck mod nk

has a unique solution modulo n1n2 · · ·nk and it can be found efficiently.

Note 3. All other solutions can be found by adding/subtracting multiples of n1n2 · · ·nk to this unique
solution.

Proof. We will show that there is a solution of these system of congruences. The uniqueness of this solution
and the fact that every other solution is obtained by adding/subtracting a multiple of n1n2 · · ·nk, is an easy
generalization of the case of two congruences. We leave it as a simple exercise for the reader.

Define N := n1n2 · · ·nk and then Ni := N/ni. We want to find a solution modulo N . Notice that n1 is
coprime to all other ni’s, i.e., n1 is coprime to N1. Suppose, thinking of induction, we had a solution r of
system of congruences,

x = c2 mod n2
...

x = ck mod nk

Then, to solve the entire system, we needed to find a solution to,

x = c1 mod n1 and x = r mod N1.

8



By the case of two congruences, the solution would have been,

x = c1N1(N−11 mod n1) + rn1(n−11 mod N1).

The first term is independent of c2, · · · , ck. This gives us the idea for the complete solution,

x =
∑
i

ciNi(N
−1
i mod ni).

Exercise 28. Show that the x above satisfies the system of congruences in the theorem.

The only remaining thing is to show that this x can be constructed efficiently. This follows because N−1i
mod ni can be found efficiently using Extended Euclidean algorithm (rest are only addition and multiplica-
tion).

Chinese remainder theorem is very useful in breaking large computation. The idea is, to compute modulo
n = pq, we can just do computation modulo p and q separately. Those results can be combined to get result
modulo n by Chinese remaindering. We will see one such application for speeding up RSA later.

6 Extra reading: Inclusion-Exclusion vs. Möbius Inversion

There is another way to look at Thm. 6. We are interested in finding out the number of elements between 0
and n−1 which do not share a factor with n = pk11 p

k2
2 · · · p

k`
` . Let us consider all the elements {0, 1, · · · , n−1}.

Define Ai to be the set of elements which are divisible by pi. For any I ⊆ [`], define AI to be the set of
elements which are divisible by all pi where i ∈ I. You can see that we are interested in the event when none
of the pi’s, where i ∈ [`], divide an element. This is a straightforward application of inclusion-exclusion,

φ(n) =
∑
I⊆[`]

(−1)|I| · |AI | .

Notice that the number of elements which are divisible by p1p2 · · · pj is just n
p1p2···pj . This gives us,

|AI | =
n∏
i∈I pi

.

So,

φ(n) =
∑
I⊆[`]

(−1)|I|
n

Πi∈Ipi
. (5)

Exercise 29. Prove that the above expression is the same as the one in Thm. 6.

In Eqn. 5, the sum is taken over all square-free (i.e. of the form p1p2 · · · pi with distinct primes) divisors
of n. Define a function, µ(k),

µ(k) :=

1, if k = 1
0, if a2 | k for some a ≥ 2
(−1)r, if k is square-free with r primes.

This function µ(k) is called the Möbius function. Then Eqn. 5 can be rewritten as,

φ(n) =
∑
d|n

µ(d) · n
d
.
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Exercise 30. For an integer n ≥ 2 show that,
∑
d|n µ(d) = 0 .

µ(k)isamultiplicativefunction,i.e.forcoprimea,b,µ(a)·µ(b)=µ(ab).Thiscanbeusedto
deducethat∑d|nµ(d)=∏i∈[`](1+µ(pi)+µ(p

2
i)+···+µ(p

ki
i))=∏i∈[`](1+µ(pi))=0.

Möbius function is really useful in number theory, and combinatorics. One of the main reasons is the
“inversion property” (for special functions f).

Theorem 8 (Möbius inversion). Let f and g be functions defined on natural numbers. Then,

f(n) =
∑
d|n

g(d) implies g(n) =
∑
d|n

µ(d)f
(n
d

)
.

Proof. Let us look at RHS of the expression for g(n):

∑
d|n

µ(d)f
(n
d

)
=
∑
d|n

µ(d)
∑
c|n/d

g(c)

=
∑
c|n

g(c)

∑
d|n/c

µ(d)


= g(n)µ(1) = g(n) .

The third equality follows from the fact that
∑
d|n µ(d) is 0 for n ≥ 2 (is 1 for n = 1). The second equality

is sum-swapping.

Exercise 31. Prove the second equality by considering the pairs (c, d) s.t. d | n and c | n/d.

Functions f and g are called Möbius transforms of each other. Eg. n and φ(n) are Möbius transforms of
each other!

Exercise 32. Finite fields are routinely used in computer science. Read up on how to use Möbius inversion
to count the number of irreducible polynomials, of degree d, over a finite field.
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