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Abstract. In recent years we witness the proliferation of semidefinite
programming bounds in combinatorial optimization [1,5,8], quantum com-
puting [9,2,3,6,4] and even in complexity theory [7]. Examples to such
bounds include the semidefinite relaxation for the maximal cut problem
[5], and the quantum value of multi-prover interactive games [3,4]. The
first semidefinite programming bound, which gained fame, arose in the
late seventies and was due to László Lovász [11], who used his theta
number to compute the Shannon capacity of the five cycle graph. As
in Lovász’s upper bound proof for the Shannon capacity and in other
situations the key observation is often the fact that the new parameter
in question is multiplicative with respect to the product of the prob-
lem instances. In a recent result R. Cleve, W. Slofstra, F. Unger and S.
Upadhyay show that the quantum value of XOR games multiply under
parallel composition [4]. This result together with [3] strengthens the
parallel repetition theorem of Ran Raz [12] for XOR games. Our goal is
to classify those semidefinite programming instances for which the opti-
mum is multiplicative under a naturally defined product operation. The
product operation we define generalizes the ones used in [11] and [4].
We find conditions under which the product rule always holds and give
examples for cases when the product rule does not hold.

1 Introduction

The Shannon capacity of a graph G is defined by limn→∞ stbl(Gn)1/n, where
stbl(G) denotes the maximal independence set size of G. In his seminal paper
of 1979, L. Lovász solved the open question that asked if the Shannon capac-
ity of the five cycle, C5 is

√
5 [11]. The proof was based on that stbl(C2

5 ) = 5
and that the independence number of any graph G is upper bounded by a cer-
tain semidefinite programming bound, that he called ϑ(G). Lovász showed that
ϑ(C5) =

√
5, and that ϑ is multiplicative: ϑ(G × G′) = ϑ(G) × ϑ(G′), for any

two graphs, G and G′. These facts together with the super-multiplicativity of
stbl(G) are clearly sufficient to imply the conjecture.

In a recent result R. Cleve, W. Slofstra, F. Unger and S. Upadhyay show that
the quantum value of XOR games multiply under parallel composition [4]. The
quantum value of a XOR game arises as the solution of an associated semidefinite
program [14] and upper bounds the classical value of the game. The result, when
combined with the fact there is a relation between the classical and quantum
values of a multi-prover game [3] gives a new proof for the parallel repetition



theorem of Ran Raz [12] at least for XOR games, which is stronger than the
original theorem of Raz when the game value approaches 1.

These successful applications of semidefinite programming bounds together
with other ones, such as bounding acceptance probabilities achievable with var-
ious computational devices for independent copies of a given computational
problem (generally known as “direct sum theorems”), point to the great use
of product theorems for semidefinite programming.

In spite of these successes we do not know of any work which systematically
investigates the conditions under which such product theorems hold. This is
what we attempt to do in this article. While we do not manage to classify all
cases, we hope that our study will serve as a starting point for such investigations.
We define a brand of semidefinite programming instances with significantly large
subclasses that obey the product rule. In Theorems 1 and 2 we describe two cases
when product theorems hold, while in Proposition 3 we give an example when
it does not. We also raise several questions that intuit that product theorems
always hold for “positive” instances, although that what should be the notion
of positivity is not yet clear. Our goal is to provoke ideas, and set the scene for
what one day might hopefully becomes a complete classification.

2 Affine semidefinite program instances

We will investigate a brand of semidefinite programming instances, which is
described by a triplet π = (J, A, b), where

– J is a matrix of dimension n × n;
– A = (A(1), . . . , A(m)) is a list of m matrices, each of dimension n × n. We

may view A as a three-dimensional matrix Akij of dimensions n × n × m,
where the last index corresponds to the upper index in the list;

– b is a vector of length m.

With π we associate a semidefinite programming instance with optimal value
α(π):

α(π) = {maxJ ∗ X | AX = b and X � 0} (1)

We define dimension of the instance as the dimension of A. Here variable matrix
X has the same dimension (n × n) as J and also the elements of the list A. To
avoid complications we assume that all matrices involved are symmetric. The
operator that we denote by ∗ is the dot product (tr(JT X) =

∑

ij JijXij) of
matrices, so it results in a scalar. The set of m linear constraints are often of
some simple form, e.g. in the case of Lovász’s theta number all constraints are
either of the form Xij = 0 or Tr(X) = 1. In our framework the constraints can
generally be of the form

∑

i,j AkijXij = bk, and the only restriction they have
compared to the most general form of semidefinite programming instances is
that all relations are strictly equations as opposed to inequalities and equations.
These types of instances we call affine. In our notation the “scalar product” AX

simply means the vector (A(1) ∗ X, . . . , A(m) ∗ X).



We will need the dual of π, which we denote by π∗ (for the method to express
the dual see for example [13]):

{min y.b | yA − J � 0} (2)

where y is a row vector of length m. Here yA is the matrix
∑m

k=1 ykA(k). The
well known duality theorem for semidefinite programming states that the value
of the dual agrees with the value of the primal.

3 Product instance

Definition 1. Let π1 = (J1, A1, b1) and π2 = (J2, A2, b2) be two semidefinite
instances with dimensions (n1, n1, m1) and (n2, n2, m2), respectively. We define
the product instance as π1 × π2 = (J1 ⊗ J2, A1 ⊗ A2, b1 ⊗ b2), where A1 ⊗ A2 is

by definition the list (A
(k)
1 ⊗ A

(l)
2 )k,l of length m1m2 of n1n2 × n1n2 matrices.

The product instance has dimensions (n1n2, n1n2, m1m2).

Although the above is a fairly natural definition, as it was pointed out in [10] in
the special case of the Lovász’s theta number, a slightly different definition gives
the same optimal value, which is useful in some cases. The idea is that in lucky
cases, when b1 and/or b2 have zeros, we may add new equations (extra to ones
in Definition 1) to the primal system representing the product instance without
changing its optimum value. The new instances that arise this way we call weak
product and denote by “×w,” even though there is a little ambiguity in the
definition (it will only be clear from the context to an individual instance which
equations we wish to add). Since if we add extra constraints to a maximization
problem, the objective value does not increase, we have that

Proposition 1. α(π1 ×w π2) ≤ α(π1 × π2).

In Section 6 we give precise definitions for weak products and investigate their
properties further. For the forthcoming sections we restrict ourselves to the prod-
uct as defined in Definition 1.

4 Product solution

Definition 2. A subclass C of affine instances is said to obey the product rule
if α(π1 × π2) = α(π1)α(π2) for every π1, π2 ∈ C.

In section 5.4 we will give an example to an affine instance whose square does
not obey the product rule. Therefore, for the product rule to hold we need to
look for proper subclasses of all affine instances.

Let π1 and π2 be two affine instances with optimal solutions X1 and X2 for
the primal and optimal solutions y1 and y2 for the dual. The first instinct for
proving the product theorem would be to show that X1⊗X2 is a solution of the
product instance with objective value α(π1)α(π2), and y1 ⊗ y2 is a solution of



the dual of the product instance with the same value. The above two potential
solutions for the product instance and its dual we call product-solution and dual
product-solution. In other words, in order to show that the product rule holds
for π1 and π2 it is sufficient to prove:

1. Feasibility of the product-solution: (A1 ⊗ A2)(X1 ⊗ X2) = b1 ⊗ b2;
2. Feasibility of the dual product-solution: y1 ⊗ y2(A1 ⊗ A2) − J1 ⊗ J2 � 0;
3. Objective value of the primal product-solution: (J1 ⊗ J2) ∗ (X1 ⊗ X2) =

(J1 ∗ X1)(J2 ∗ X2);
4. Objective value of the dual product-solution: (y1⊗y2).(b1⊗b2) = (y1.b1)(y2.b2).

We also need the positivity of X1⊗X2, but this is automatic from the positivity
of X1 and X2. Which of 1–4 fail to hold in general? Basic linear algebra gives
that conditions 1, 3 and 4 hold without any further assumption. Thus we already
have that:

Proposition 2. Let π1 and π2 be two affine instances. Then α(π1 × π2) ≥
α(π1)α(π2).

In what follows, we will examine cases when Condition 2 also holds.

5 The missing condition

In the sequel we will present two different sufficient conditions for Condition 2
of the previous section and we also derive a necessary condition for it (which
is also sufficient if we restrict our attention to an instance and its square), but
the latter expression uses y1 and y2, like Condition 2 itself. It remains a task
for the future to develop a necessary and sufficient condition whose criterion is
formulated solely in terms of the problem instances π1 and π2.

5.1 Positivity of matrix J

Our first simple condition is the positivity of J .

Theorem 1. Assume that both J1 and J2 are positive semidefinite. Then α(π1×
π2) = α(π1)α(π2).

Proof. As we noted in Section 4 it is sufficient to show that Condition 2 of
that section holds. By our assumptions on y1 and y2 we have that y1A1 − J1

and y2A2 − J2 are positive semi-definite. So y1A1 + J1 and y2A2 + J2 are also
positive semi-definite, since they arise as sums of two positive matrices. For
instance, y1A1 + J1 = (y1A1 − J1) + 2J1. The above implies that

(y1A1−J1)⊗(y2A2+J2) = y1A1⊗y2A2−J1⊗y2A2+y1A1⊗J2−J1⊗J2 � 0. (3)

Also

(y1A1+J1)⊗(y2A2−J2) = y1A1⊗y2A2−y1A1⊗J2+J1⊗y2A2−J1⊗J2 � 0 (4)



Taking the average of the right hand sides of Equations (3) and (4) we obtain
that

y1A1 ⊗ y2A2 − J1 ⊗ J2 � 0, (5)

which is the desired Condition 2. (Note: It is easy to see that y1A1 ⊗ y2A2 =
y1 ⊗ y2(A1 ⊗ A2).)

Lovász theta number ([11]) is an example that falls into this category. Con-
sider the definition of Lovász theta number in [13]. Then J is the all 1′s matrix,
which is positive semidefinite. The matrix remains positive definite even if we
consider the weighted version of the theta number [10], in which case J is of the
form wwT for some column vector w.

5.2 All A(k) are block diagonal, and J is block anti-diagonal

The argument in the previous section is applicable whenever ycAc + Jc (c ∈
{1, 2}) are known to be positive semidefinite matrices. Let us state this explicitly:

Lemma 1. Whenever ycAc + Jc (c ∈ {1, 2}) are positive definite, where y1 and
y2 are the optimal solutions of π∗

1 and π∗
2 , respectively, then the product theorem

holds for π1 and π2.

This is the avenue Cleve et. al. take in [4]. Following their lead, but slightly
generalizing their argument we show:

Lemma 2. For a semidefinite programming instance π = (A, J, b) if the matrix
J is block anti-diagonal and if y is a feasible solution of the dual such that yA

is block diagonal then yA + J � 0.

Block diagonal and anti-diagonal matrices have the following structure:

Block anti-diagonality Block diagonality

(

0 M

MT 0

) (

P 0
0 Q

)

In our definition block diagonal and anti-diagonal matrices have two by two
blocks. We require that if J is block anti-diagonal and yA is block-diagonal,
then their rows and columns be divided to blocks in exactly the same way.

We will prove our claim by contradiction. Suppose yA and J are of the
required form but yA+J is not positive semidefinite. Then there exists a vector
w, in block form w = (w′, w′′) for which wT (yA + J)w is negative (we treat all
vectors as column vectors). Define v = (w′,−w′′). Now

vT (yA − J)v =

(w′,−w′′)T yA(w′,−w′′) − (w′,−w′′)T J(w′,−w′′) =

(w′, w′′)T yA(w′, w′′) + (w′, w′′)T J(w′, w′′) =

wT (yA + J)w < 0.



This implies that yA−J is not positive semidefinite, which is a contradiction
since by our assumption y is a solution of π∗. We can generalize the proof for
case when J is of the form J1 + J2, where J1 is of the form as before and J2 is
positive semidefinite ( yA should still be block diagonal). Notice that the block
diagonality of yA automatically holds if A = (A(1), . . . , A(m)), where each A(k)

is block diagonal. We summarize the findings of this section in the following
theorem:

Theorem 2. Let π1 = (A1, J1, b1) and π2 = (A2, J2, b2) be affine instances such
that for c ∈ {1, 2}:
1. Ac = (A

(1)
c , . . . , A

(m)
c ), where each A

(k)
c is block diagonal;

2. Jc = J ′
c + J ′′

c (c ∈ {1, 2}), where J ′
c is block anti-diagonal and J ′′

c is positive.

(All blocked matrices have the same block divisions.) Then for π1 and π2 the
product theorem holds.

5.3 A necessary condition for the feasibility of y1 ⊗ y2

In this section we show that the condition in Lemma 1 is not only sufficient, but
also necessary (or at least “half of it”), if we insist on the “first instinct” proof
method.

Lemma 3. For two instances π1 and π2, let y1 and y2 be optimal solutions of π∗
1

and π∗
2 , respectively. Then y1⊗y2 is a feasible solution of the dual of the product

instance (i.e. Condition 2 of section 4 holds) only if at least one of ycAc + Jc

(c ∈ {1, 2}) are positive definite.

Proof. Let us assume the contrary. Then we have vectors wc (c ∈ {1, 2}) such
that wT

c (ycAc + Jc)wc < 0 (c ∈ {1, 2}). Our assumptions imply that wT
c (ycAc −

Jc)wc ≥ 0 (c ∈ {1, 2}). Now it holds that

(w1 ⊗ w2)
T ((y1A1 − J1) ⊗ (y2A2 + J2))(w1 ⊗ w2) < 0

⇒ (w1 ⊗ w2)
T (y1A1 ⊗ y2A2 − J1 ⊗ J2 − J1 ⊗ y2A2 + y1A1 ⊗ J2)(w1 ⊗ w2) < 0

⇒ (w1 ⊗ w2)
T (y1A1 ⊗ y2A2 − J1 ⊗ J2)(w1 ⊗ w2) +

(w1 ⊗ w2)
T (y1A1 ⊗ J2 − J1 ⊗ y2A2)(w1 ⊗ w2) < 0

By similar argument, considering now the inequality

(w1 ⊗ w2)
T ((y1A1 + J1) ⊗ (y2A2 − J2))(w1 ⊗ w2) < 0,

we can show that

(w1 ⊗ w2)
T (y1A1 ⊗ y2A2 − J1 ⊗ J2)(w1 ⊗ w2) +

(w1 ⊗ w2)
T (−y1A1 ⊗ J2 + J1 ⊗ y2A2)(w1 ⊗ w2) < 0

By averaging the two inequalities we get that

(w1 ⊗ w2)
T (y1A1 ⊗ y2A2 − J1 ⊗ J2)(w1 ⊗ w2) < 0

This contradicts to the assumption of the lemma that y1⊗y2 is a feasible solution
of π1×π2 (which in turn implies that y1A1⊗y2A2−J1⊗J2 is positive definite).



One might suspect that the full converse of Lemma 1 holds, i.e. in the case
of the feasibility of y1 ⊗ y2 both y1A1 + J1 and y2A2 + J2 should be positive
semi-definite, but in the next section we give a counter-example to this.

5.4 Maximum eigenvalue of a matrix

In this section we give an example when the product theorem does not hold.
The example is the maximal eigenvalue function of a matrix, which, in contrast
to the similar notion of spectral norm, is not multiplicative. Indeed, let M be
a matrix with maximal eigenvalue 1 and minimal eigenvalue −2. Then, using
the fact that under tensor product the spectra of matrices multiply, we get that
M ⊗M has maximal eigenvalue 4 6= 12 (the corresponding spectral norms would
be 2 for M and 4 for M ⊗ M).

Proposition 3. The maximal eigenvalue of a matrix can be formulated as the
optimal value of an affine semidefinite programming instance. This instance is
not multiplicative.

Proof. First notice that

max eigenvalue(M) = {min λ | λI − M � 0}. (6)

This is a dual (minimization) instance. Observe that m = 1, n′ = n, A = (I),
J = M and b = 1. For the sake of completeness we describe the primal problem:

max eigenvalue(M) = {max
∑

1≤i,j≤n

MijXij | TrX = 1; X � 0}. (7)

The product instance associated with two matrices, M1 and M2, has parameters
I = I1⊗I2, M = M1⊗M2 and b = 1. Since I is an identity matrix of appropriate
dimensions, the optimum value of this instance is exactly the maximal eigenvalue
of M1 ⊗ M2. On the other hand, as was stated in the beginning of the section,
the maximal eigenvalue problem is not multiplicative.

It is educational to see where the condition of Proposition 3 fails. Recall that
J = M , A = (I) and y = λ (the maximal eigenvalue of M). The point is that
even when λI−M is positive, λI +M is not necessarily. On the other hand, if M

is positive then λI−M � 0 ⇒ λI +M � 0, and indeed the maximum eigenvalue
of positive matrices multiply under tensor product. As a perhaps far-fetched
conjecture we ask:

Conjecture 1. For an affine instance π = (A, J, b) define

α+(π) = {max |J ∗ X | | AX = b and X � 0}.

Is it true that α+ is always multiplicative? Here α+ represents a generalized
“spectral norm.”



We can extend the above example to show that in Lemma 3 we cannot
exchange the “one of” to “both.” Let M1 be the matrix with eigenvalues −2 and
1 and let M2 be the matrix with eigenvalues 0 and 1. Then y1 = 1 and y2 = 1,
so y1 ⊗ y2 = 1, which is a solution of

{min λ | λI − M1 ⊗ M2 � 0}, (8)

even though I + M1 is not positive semidefinite.

6 The weak product

A surprising observation about the theta number of Lovász, well described in
[10], is that it is multiplicative with two different notions of products:

Definition 3 (Strong product “×” of graphs). (u′, u′′) −− (v’,v”) or (u′, u′′)
= (v′, v′′) in G′ ×G′′ if and only if (u′ −− v′ or u′ = v′ in G′) and (u′′ −− v′′

or u′′ = v′′ in G′′).

and

Definition 4 (Weak product “×w” of graphs). G′ ×w G′′ = G′ × G′′.

Recall that ϑ(G) is defined by [13] (by J we denote the matrix with all 1 ele-
ments):

ϑ(G) = {maxJ ∗ X | I ∗ X = 1; ∀(i, j) ∈ E(G) : Xi,j = 0; X � 0}. (9)

That is, every edge gives a new linear constraint, increasing m by one. In general,
E(G′ ×w G′′) ⊇ E(G′ × G′′), because (u′, u′′) −− (v′, v′′) is an edge of G′ × G′′

if and only if both of its projections are edges or identical coordinates, but
(u′, u′′) 6= (v′, v′′). On the other hand, (u′, u′′) −− (v′, v′′) is an edge of G′×w G′′

if and only if there exists at least one projection which is an edge.
It is easy to see that the constraint in Expression (9) for ϑ(G′ × G′′) has a

constraint for every constraint pair in the corresponding expression for G′ and
G′, so the strong product is the one that corresponds to our usual product notion
that appears in previous sections. In contrast, when we write down Expression
(9) for ϑ(G′ ×w G′′), we see a lot of extra constrains.

How do they arise? In general, assume that we know that the product solution
X1 ⊗ X2 is the optimal solution for π1 × π2 (which is indeed the case under the
conditions we considered in earlier sections). Assume furthermore that some

coordinate i of b1 is zero. Then A
(i)
1 ∗ X1 = 0. Now we may take any n2 × n2

matrix B, and it will hold that

(A
(i)
1 ⊗ B) ∗ (X1 ⊗ X2) = (A

(i)
1 ∗ X1)(B ∗ X2) = 0.

Therefore adding matrices of the form A
(i)
1 ⊗ B to A1 ⊗ A2 and setting the the

corresponding entry of the longer b vector of the product instance to zero will



not influence the objective value. The same can be said about about exchanging
the roles of π1 and π2.

We can easily see that the weak product in the case of the theta number
arises this way. That what equations to the product system we wish to add
this way is a matter of taste, and we believe it depends on the specific class of
semidefinite programming instances under study. We summarize the finding of
this section in the following proposition

Proposition 4. Assume that for affine instances π1 and π2 the multiplicative
rule holds. Then if define a system π1 ×w π2 that we call “weak product” by con-
veniently adding arbitrary number of new constrains to the system that follow the
construction rules described above (in particular, every added constraint should
be associated with a zero entry of b1 or b2), the multiplicative rule will also hold
for the weak product.

The above lemma explains why the theta number of Lovász is multiplicative
with respect to the weak product of graphs.

7 Some open problems

We formulate some further open problems all coming from the intuition that
there must be a notion of “positive” affine instances for which the product the-
orem always holds.

Conjecture 2. Is it true that if for an instance π it holds that α(π2) = α(π)2,
then for every d > 2 integer it holds that α(πd) = α(π)d.

The next question relates to monotonicity:

Conjecture 3. Let π1 = (A1, J1, b1) and π2 = (A2, J2, b2) be the affine instances
for which the product theorem holds. Then it also holds for the instance pair
π′

1 = (A1, J1 + J, b1) and π′
2 = (A2, J2 + J ′, b2), where J and J ′ are positive

matrices.

The following question suggests that the more negative J is, the more special
A has to be. In particular, if J is not positive then at least some A is excluded.

Conjecture 4. For every strictly non-positive J (i.e. J has a negative eigenvalue)
there are A and b such that for the instance π = (A, J, b) it holds that α(π2) 6=
α(π)2.

On the other hand, we may conjecture that whether the product theorem
holds or not is entirely independent of b:

Conjecture 5. Let π1 = (A1, J1, b1) and π2 = (A2, J2, b2) be the affine instances
for which the product theorem holds. Then it also holds for the instance pair
π′

1 = (A1, J1, b1 + b) and π′
2 = (A2, J2, b2 + b′) for any b and b′.

Another question is: What are those instances π (if there are any) for which
the product theorem always holds with any other instance?



8 Conclusions

We have started to systematically investigate product theorems for affine in-
stances of semidefinite programming. Our theorems imply the important result
of Cleve. et al. [4] about the multiplicativity of the quantum value for the XOR
games and the multiplicativity of the theta number of Lovász [11]. Although
their proof came both logically and chronologically first, the mere fact that the
proposed theory has such immediate consequences, in our opinion serves as a
worthwhile motivation for its development. Added to this that various direct
sum results for different computational models would also be among the imme-
diate consequences of the theory, we conclude that we have hit upon a basic
research topic with immediate and multiple applications in computer science.
The issue, therefore, at this point is not the number of potential applications,
which seems abundant, but rather the relative scarcity of positive results. In
the paper we have formulated conjectures that we hope will raise interest in
researchers who intend to study this topic further.
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