
Conway Polynomials and other Compatible Polynomials

Rohit Gurjar
Dept. Of Computer Science and Engineering, IIT Kanpur

August 20, 2008

1

Abstract

Conway Polynomials, a particular class of irreducible polynomials, provides a means for efficiently
representing finite fields in computational algebra systems. In 1999, Heath and Loehr gave two al-
gorithms for generating Conway Polynomials, which perform better than the brute force algorithm
in most cases. The first algorithm, based on roots of lower Conway Polynomials, was erroneous,
in particular it worked only for those GF (pn) s.t. µ(n) 6= 0, where µ is the möbius function. We
corrected the algorithm while maintaining the time complexity and implemented it in GAP. We
also discuss an approach for generating another family of polynomials which has the property of
compatibility like the Conway Polynomials and is much easier to compute.

Introduction

Every finite field F is characterized by two parameters- its prime characteristic p and its dimension
n over Zp, the integers modulo p. The field F has pn elements and is isomorphic to any other field
having pn elements. The field F is often denoted as GF (pn), where GF is for Galois field. The
multiplicative group of F is denoted as F∗ and is always cyclic. A primitive element of F∗ is any
element that generates the multiplicative group. In particular, if α ∈ F∗ is a primitive element, then

1 = α0, α, α2, . . . , αp
n−2

are the elements of F∗. As we will frequently need the cardinality pn−1 of the multiplicative group,
let Mp,n denote pn − 1.
Let Zp[x] be the one-variable polynomial ring over Zp. A polynomial f ∈ Zp[x] is irreducible if
f = gh implies that either g or h is a constant. An irreducible polynomial f of degree n is primitive
if some root (and hence every root) of f is a primitive element of GF (pn)∗. Typically, the finite field
GF (pn) is represented as the quotient ring Zp[x]/(f), where f is an irreducible polynomial of degree
n. Moreover, if f is primitive, then a representation of the elements of GF (pn)∗ can be based on a
root α of f . For an element γ ∈ GF (pn)∗, define the index of γ to be the smallest integer i ≥ 0 such
that αi = γ. Alternatively, we can uniquely represent each element β ∈ GF (pn) as a polynomial in
α of degree at most n− 1.
The index representation turns multiplication in GF (pn)∗ into addition modulo Mp,n, while the
polynomial representation makes for straightforward addition in GF (pn). Challenge arise when
representing more than just the two fields Zp and GF (pn). Consider the case of a chain of fields
Zp ⊂ GF (pn1) ⊂ GF (pn2), where 1 < n1 < n2. In this case, n1 divides n2. Suppose that α1 and
α2 are primitive elements of GF (pn1) and GF (pn2), respectively. The cyclic group GF (pn1)∗ is a
subgroup of the cyclic group GF (pn2)∗, and the smallest power of α2 that gives a generator γ of
GF (pn1) is

γ = α
Mp,n2/Mp,n1
2

Arithmetic in this cahin of fields, especially multiplication, will be most convenient if γ = α1.
If f1 and f2 are the minimal polynomials of α1 and α2, respectively, then it is easy to see that
α1 = α

Mp,n2/Mp,n1
2 implies

f2(x)|f1(xMp,n2/Mp,n1).

2

We generalize these observations as follows. Suppose that for each of the subfields GF (pn
′
) of a

finite field GF (pn) we have chosen a primitive, irreducible polynomial fp,n′ ∈ Zp[x] of degree n′. If
whenever n1|n2 and n2|n, we have

fp,n2(x)|fp,n1(xMp,n2/Mp,n1),

then we say that the polynomial chosen are compbatible.
As defined by Jansen et al.(1995) and Parker (1990), Conway Polynomials is a particular collec-

tion of particular of compatible polynomials. The Conway polynomial for representing GF (pn) is
denoted as Cp,n. To define the Conway polynomials, we first introduce a lexicographic order <lex
on polynomials of degree d in Zp[x].

adx
d + ad−1x

d−1 + · · ·+ a1x+ a0 <lex bdx
d + bd−1x

d−1 + · · ·+ b1x+ b0

iff, for some i with d ≥ i > 0, we have
aj = bj

for all j > i and
(−1)d−iai < (−1)d−ibi,

where the element order < in Zp is given by

0 < 1 < · · · < p− 1

. The base case of the definition of Conway polynomials is Cp,1(x) = x− γ, where γ is the smallest
primitive element of Zp with respect to the element order. For the general case, choose Cp,n to be
the lexicographically smallest monic, irreducible, primitive polynomial of degree n such that, for
every n′ < n satisfying n′|n, we have

Cp,n(x)|Cp,n′(xMp,n2/Mp,n1).

This definition yields the Conway polynomials.

Error

In the paper “New algorithms for generating conway polynoimals over finite fields” [1] Heath and
Loehr gave two new algorithms to generate Conway polynomials. First algorithm based on the
roots of lower polynomials had some error. The routine GENERATECONWAY(p,n) returns correct
polynomials only for particular values of n, when all maximal divisors of n are pairwise relatively
prime. when each prime factor of n divides it only once, i.e. if prime factorization of n is n =
qe11 . . . qes

s , then e1 = e2 · · · = es = 1.
Let us see why the algorithm fails to work for all the cases. Suppose n has two prime factors (for
example n=12 with prime factors 2 and 3). Now maximal divisors of n are d1 = 4 and d2 = 6. Let
us assume p = 2. In the algorithm we take cp1 = CP (p, d1) and cp2 = CP (p, d2). Now x1 and x2

are any roots of cp1 and cp2 respectively. In the algorithm there is one assumption that there exist
some z with order r s.t.

zr/f1 = x1

zr/f2 = x2

3

where r = pn − 1, f1 = pd1 − 1, f2 = pd2 − 1
Now, this assumption should hold only when x1 and x2 are compatible with same set of lower
conway polynomial roots. Because cp1 and cp2 are conway polynomials, it ensures that for a root
x1 of cp1, there exist some root(s) x2 of cp2 s.t. x1 and x2 are compatible with same set of lower
conway polynomial roots. But it does not ensure that if we choose any roots x1 and x2, they will
be compatible with same set of lower conway polynomial roots. In the algorithm we choose any
roots, so the resulting CP (p, n) is not compatible with cp1 and cp2 in some cases. When d1 and d2

are relatively prime, the algorithm works fine, because there is no common subfield of the two fields
GF (pd1) and GF (pd2), except the base field GF (p). In this particular example f1 = 15, f2 = 63;
gcd{f1, f2} = 3, now we should choose x1 and x2 s.t. there exists an element x0 with order 3, s.t.

x
f1/3
1 = x0

x
f2/3
2 = x0

Then, the algorithm should work fine. The corrected algorithm is given below.

Corrected Algorithm

GENERATECONWAY(p, n)
1: let n = qe11 . . . qes

s be the prime factorization of n
2: r ←Mp,n

3: for i← 1 to s do
4: di ← n/qi
5: fi ←Mp,di

6: mi ← r/fi
7: xi ← a root of Cp,di

8: end for
9: y ← x1

10: v ← f1
11: for i← 2 to s do
12: find α, β such that αv + βfi = gcd{v, fi}
13: f ← gcd{v, fi}
14: for k = 0 to d[i]− 1 do
15: if xifi/f = yv/f then
16: break
17: end if
18: xi ← xi

p

19: end for
20: y ← yβxαi
21: v ← lcm{v, fi}
22: end for
23: g ← r/v
24: min poly ←∞
25: for z a gth root of x in GF (pn) do
26: poly ← minimum polynomial of z

4

27: if poly has degree n and poly is primitive and poly < min poly then
28: min poly ← poly
29: end if
30: end for
31: return min poly

Suppose at the starting of the iteration of the for loop(line 11), when i = j, v = vj , y = yj ,
α = αj , β = βj . And at the end of all iterations their values are vs+1, ys+1, αs+1, βs+1 respectively.
It is clear to see that vs+1 = lcm{f1, f2, . . . fs}

The only difference from the original algorithm given in the paper [1] is the code added from line
13 to line 19. Instead of choosing any roots of conway polynomials, appropriate roots are chosen
such that they are compatible with same set of lower conway polynomial roots.
After this modification, this part of algorithm i.e. to find a particular combination of roots will take
O(sum of all the maximal divisors of n) in the worst case. Which is still not comparable to the
time taken in the last part of algorithm which is to find lexicoagraphically minimum polynomial
amongst all possiblities. So, this modification does not affect the time complexity significantly. The
proof of correctness is given below.
Let xj stands for the appropriate root of CPj , which we get after the loop ending at line 19.

Theorem 1. ys+1
vs+1/fj = xj ∀j ∈ {1, 2 . . . s}

Proof. We know that, yj+1 = yj
βjxj

αj and vj+1 = lcm{vj , fj} ∀j ∈ {1, 2 . . . s} So for any k ≤ s+ 1
and j < k,

y
vk/fj

k =
(
yk−1

βk−1xk−1
αk−1

) lcm{vk−1,fk−1}
fj

=
(
yk−1

βk−1xk−1
αk−1

) fk−1
gcd{vk−1,fk−1}

vk−1
fj

=

(
yk−1

βk−1fk−1
gcd{vk−1,fk−1}xk−1

αk−1fk−1
gcd{vk−1,fk−1}

) vk−1
fj

Now, the for loop starting at line 14 ensures that xj
fj

gcd{vj ,fj} = yj

vj

gcd{vj ,fj} ∀j ∈ {1, 2 . . . s} So,

y
vk/fj

k =

(
yk−1

βk−1fk−1
gcd{vk−1,fk−1} yk−1

αk−1vk−1
gcd{vk−1,fk−1}

) vk−1
fj

=

(
yk−1

βk−1fk−1+αk−1vk−1
gcd{vk−1,fk−1}

)vk−1
fj

We know that βjfj + αjvj = gcd{vj , fj}, ∀j ∈ {1, 2 . . . s}, so,

5

y
vk/fj

k = yk−1

vk−1
fj

= yk−2

vk−2
fj

...

= yj+1

vj+1
fj

=
(
yj
βjxj

αj
) vj+1
fj

=
(
yj
βjxj

αj
) lcm{vj ,fj}

fj

=
(
yj
βjxj

αj
) vj

gcd{vj ,fj}

= yj

βjvj

gcd{vj ,fj}xj

αjvj

gcd{vj ,fj}

= xj

βjfj

gcd{vj ,fj}xj

αjvj

gcd{vj ,fj}

= xj

βjfj+αjvj

gcd{vj ,fj}

= xj

We showed that
y
vk/fj

k = xj ∀j < k (1)

So, ys+1
vs+1/fj = xj ∀j ∈ {1, 2 . . . s}.

We can see that CPj is a conway polynomial ∀j ∈ {1, 2 . . . s}, it ensures that for any root xj of
CPj , there exist a root xk of CPk s.t.

xj

fj

gcd{fj ,fk} = xk
fk

gcd{fj ,fk} (2)

because gcd{fj , fk} is the order of the multiplicative group of the largest common subfield of the
two fields GF (pj) and GF (pk).
We know that the roots of CPi can be given by xi, x

p
i , x

p2

i , . . . x
pdi−1

i . So, it is clear to see that in
the for loop starting from line 14, it goes over all the roots of CPi, and checks that if there exist a
root xi of CPi s.t.

xi
fi

gcd{vi,fi} = yi
vi

gcd{vi,fi}

Now, it is remained to show that there always exists such a root. Consider the following thoerem.

Theorem 2. There exist a root xi of CPi s.t. xi
fi

gcd{vi,fi} = yi
vi

gcd{vi,fi} , ∀i ≤ s

6

Proof. We prove the above theorem by induction in i. We know that y2 = x1 and v2 = f1, so, it is
clear from equation(2) that the theorem is true for i = 2.
Now, assume the theorem to be true for all i < j, i.e., there exist a root xi of CPi s.t.

xi
fi

gcd{vi,fi} = yi
vi

gcd{vi,fi} ∀i < j

From equation (1),
yi
vi/fk = xk ∀k < i

So, for all k < i

xk
fk

gcd{fi,fk} = yi
vi

gcd{fi,fk}

(a)
=

(
yi

vi

gcd{vi,fi}
) gcd{vi,fi}

gcd{fi,fk}

=
(
xi

fi

gcd{vi,fi}
) gcd{vi,fi}

gcd{fi,fk}

= xi
fi

gcd{fi,fk}

which is true for all i < j. (a) is true because gcd{vi,fi}
gcd{fi,fk} is an integer.

In other words we can say

xk1

fk1
gcd{fk1 ,fk2} = xk2

fk2
gcd{fk1 ,fk2} ∀k1, k2 < j

So, we can say that there exists a root xj of CPj compatible to xk ∀k < j, i.e.,

xj

fj

gcd{fj ,fk} = xk
fk

gcd{fj ,fk} ∀k < j

because they are compatible roots of conway polynomials.

Claim 1. For that xj,

xj

fj

gcd{fj ,vk} = yk
vk

gcd{fj ,vk} ∀k ≤ j

Proof. We prove claim(1) by induction in k. We know that y2 = x1 and v2 = f1, so claim(1) is true
for k = 2. Suppose claim(1) is true for some k ≤ j − 1. Then consider,

yk+1

vk+1
gcd{fj ,vk+1} =

(
yβk

k xαk

k

) vk+1
gcd{fj ,vk+1}

= y

βkvk+1
gcd{fj ,vk+1}
k x

αkvk+1
gcd{fj ,vk+1}
k

= yk

„
vk

gcd{fj ,vk}
βkvk+1 gcd{fj ,vk}
vk gcd{fj ,vk+1}

«
xk

„
fk

gcd{fj ,fk}
αkvk+1 gcd{fj ,fk}
fk gcd{fj ,vk+1}

«

7

It can be easily verified that βkvk+1 gcd{fj ,vk}
vk gcd{fj ,vk+1} and αkvk+1 gcd{fj ,fk}

fk gcd{fj ,vk+1} are integers. Now, we assumed
claim(1) to be true for k. So,

yk+1

vk+1
gcd{fj ,vk+1} = xj

„
fj

gcd{fj ,vk}
βkvk+1 gcd{fj ,vk}
vk gcd{fj ,vk+1}

«
xj

„
fj

gcd{fj ,fk}
αkvk+1 gcd{fj ,fk}
fk gcd{fj ,vk+1}

«

= xj

fj

gcd{fj ,vk+1}

„
βkvk+1
vk

+
αkvk+1
fk

«

= xj

fj

gcd{fj ,vk+1}

So, claim(1) is also true for k + 1. Thus, claim(1) is true for all k ≤ j.

Hence, we showed that there exist a root xj of CPj s.t.,

xj

fj

gcd{vj ,fj} = yj

vj

gcd{vj ,fj}

i.e., the theorem is true for i = j. Hence the theorem is true for all i ≤ s.

Now, we know that vj = lcm{vj−1, fj−1}. So, we can see that yj is an element of order
lcm{f1, f2, . . . fj−1}, and is compatible with xk ∀k < j i.e.,

y
vj/fk

j = xk

Let us say ys+1 to be y. It is clear to see that, y is an element of order vs+1 = lcm{f1, f2, . . . fs}.
And y is compatible with roots of lower conway polynomials. Let us say g = Mp, n/vs+1, then all
gth roots of y that are primitive elements of GF (pn) are candidates of being the roots of the Conway
Polynomial Cp,n. In the last part of the algorithm lexicographically minimum polynomial is being
found among all g possiblities.

Implementation in GAP and Results

The important fuctions in the implemetation are as follows:

• irreducible(p, n)
Takes a prime p and an integer n as arguments, and returns an irreducible polynomial over Fp
with degree n. It goes over polynomials over Fp with degree n, and checks if it is irreducible,
and returns the first irreducible polynomial it finds.

• gthRoot(element, g, ff, primeField)
Takes a field ff , an integer g, an element of the field element and the prime subfield of ff ,
primeField. It returns gth root of element in the field ff and gth primitive root of unity in
the field ff , so that all the gth roots of the element can be generated. For computing gth

root, the algorithm given in the section 7.3 of the book [2] is used.

8

• comparePoly(poly1, poly2)
Takes two polynomials poly1 and poly2, and returns true if poly1 lexicographically smaller
than poly2, false otherwise.

• conwayPolynomial(p, n)
Takes a prime p and an integer n as arguments, and returns Cp,n. In the case when n = 1,
it uses the algorithm ConwayPolynomial(p, 1) inbuilt in GAP. In other case the algorithm
given in this report is implemented. First it generates an irreducible polynomial over Fp
with degree n, to represent the field GF (pn), because the algorithm involves some field op-
erations in GF (pn). For computing lower conway polynomials recursively the same function
is used. And for computing the roots of the lower conway polynomials an inbuilt fucntion
RootsOfUPol(polynomial) is used. Rest is done as in the algorithm given in this report.

Other Compatible Polynomials

We can see that major time expense incurred by the algorithm occurs when it checks all g of the gth

roots of y to find the primitive root whose minimal polynoimal is lexicographically smallest. This
algorithm is much better than the brute force algorithm except some cases. Still we are able generate
only that many polynomials which are already present in the inbuilt list of Conway Polynomials in
GAP. It looks that GAP uses a similar algorithm which takes O(g) time.

As given in the section Alternative directions of [1], because so many of the gth roots of y are
primitive, we can find a primitive root with a compatible minimal polynomial very quickly, by
stopping at the first primitive root we find. The polynomimal so obtained is not, in general, the
Conway polynomial. However, it does have all the desirable algebraic properties of the Conway poly-
nomial, namely primitivity and compatibility with previously chosen polynomials. Hence, for each
p, one can quickly generate a large set of compatible polynomials to represent fields of characterstic p.

Indeed one can define a new set of polynoimals via the modified version of the algorithm. The
only difficulty in postulating such a definition is that certain portions of the algorithm-speicifically,
finding an irreducible polynomial and taking roots in finite fields-involve randomized algorithms;
hence the algorithm would produce different polynoimals each time it is executed. To obtain one
statndard set of polynomials, it is necessary to remove all the randomness from the algorithm used to
define these polynomials. In the function irreducible(p, n) polynomials are picked in an order rather
than randomly. Also in the function gthRoot(element, g, ff, primeField) randomness is removed.
But as soon as we remove the randomness we cannot claim that the time taken by these functions
is less. Practically it works but there might be cases where they take long time.

This modified algorithm is also implemented and tested. The implementation code is in the file
named “compatiblePolynomial”. The code is same except that the conwayPolynomial function is
replaced with compatiblePolynomial. Which does not go over all the gth roots, instead stops as
soon as it finds first primitive root. The list generated of these new set of polynomials, is much
larger than the inbuilt list of conway polynomials. Which are equally good for representing finite

9

Table 1: values of n upto which compatible polynomials were computed corresponding to p
p n
2 159
3 100
5 100
7 100
11 100
13 100
17 100
23 100
29 100

fields. The table below gives the values of n upto which compatible polynomials were computed
corresponding to each p ≤ 29.

Future Work

As written above, after removal of randomness we cannot say that those routines will take less time.
So, one of the work can be to prove that time taken by those routines is still less even after removal
of randomness. Or to give other algorithms for finding an irreducible polynomial and for finding
roots in finite field which is not randomized and also do not take much time.

In the modified algorithm, major time taking part is to compute roots of the lower compatible
polynomials. Which currently uses the inbuilt function RootsOfUPol(polynomial). I believe this
time can be reduced, because we know that these polynomials are irreducible over GF (p), which
can give some advantage, which is not used in the inbuilt function.

References

[1] Heath, L.S., Loehr, N.A., 2004 “New algorithms for generating Conway polynomials over finite
fields”

[2] Bach, E., Shallit, J., 1996. “Algorithimic Number Theory”

10

