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Abstract

The perfect matching problem has a randomized NC-algorithm based on the Isolation
Lemma of Mulmuley, Vazirani and Vazirani. We give an almost complete derandomiza-
tion of the Isolation Lemma for perfect matchings in bipartite graphs. This gives us a
deterministic quasi-NC-algorithm for the bipartite perfect matching problem.

The outline presented here emphasizes a geometric point of view. We think that this
will be useful also for the perfect matching problem in general graphs.

1 Introduction

The perfect matching problem, PM, asks whether a given graph contains a perfect matching.
The problem has a polynomial-time algorithm due to Edmonds [Edm65]. However, its parallel
complexity is still not completely resolved. The problem can be solved by randomized efficient
parallel algorithms due to Lovász [Lov79], i.e., it is in RNC. However, it is not known whether
randomness is necessary, i.e., whether it is in NC.

The construction version of the problem, Search-PM, asks to construct a perfect matching
in a graph if one exists. This version is also in RNC due to Karp, Upfal, and Wigder-
son [KUW86] and Mulmuley, Vazirani, and Vazirani [MVV87]. The latter algorithm uses the
celebrated Isolation Lemma. It works with a weight assignment on the edges of the graph. A
weight assignment is called isolating for a graph G if the minimum weight perfect matching
in G is unique, if one exists. The Isolation Lemma states that a randomly chosen weight
function is isolating with high probability. Given an isolating weight assignment with poly-
nomially bounded integer weights for a graph G, it is easy to construct a perfect matching
in G in NC.

Lemma 1.1 (Isolation Lemma [MVV87]). For a graph G(V,E), let w ∈ {1, 2, . . . , 2|E|}E be a
uniformly random weight assignment on its edges. Then w is isolating with probability ≥ 1/2.

Derandomizing this lemma means to construct such a polynomially bounded weight as-
signment deterministically in NC. This remains a challenging open question. A general version
of this lemma, which considers a family of sets and requires a unique minimum weight set, has
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also been studied. The general version is related to the polynomial identity testing problem
and circuit lower bounds [AM08].

The Isolation Lemma has been derandomized for some special classes of graphs, e.g.,
planar bipartite graphs [DKR10, TV12], strongly chordal graphs [DK98], and graphs with a
small number of perfect matchings [GK87, AHT07]. Here, we present an almost complete
derandomization of the Isolation Lemma for bipartite graphs. In Section 3, we construct
an isolating weight assignment for these graphs with quasi-polynomially large weights. As
a consequence we get that for bipartite graphs, PM and Search-PM are in quasi-NC2. In
particular, they can be solved by uniform Boolean circuits of depth O(log2 n) and size nO(logn)

for graphs with n nodes.

Theorem 1.2. For bipartite graphs, PM and Search-PM are in quasi-NC2.

There are several ways to prove this result. There is a purely combinatorial proof that uses
Hall’s Theorem, which we discuss in the Appendix. This might be the proof that would be
easiest to follow for many readers. However, here, in Section 2 and 3, we present a geometric
proof that is based on the perfect matching polytope of a graph. We do this for several reasons.
First of all, this was the way we got the result. We still think that this is the most intuitive
way to understand what is going on. Second, two of the authors [GT16] generalized the result
to linear matroid intersection. This generalization is heavily based on the geometric view.
Finally, because of the success of the geometric viewpoint in the previous cases, we think that
it will also help to solve the ultimate goal: to get the perfect matching problem for general
graphs in NC, or quasi-NC. Therefore, we think that it is a good idea to study the perfect
matching polytope.

2 Perfect Matching Polytope

We provide definitions and a characterization of the perfect matching polytope in Section 2.1.
Then, in Section 2.2, we look at the faces of this polytope and prove Lemma 2.2, the crucial
technical result that makes our approach work.

2.1 Definition of the perfect matching polytope

Perfect matchings have an associated polytope, called the perfect matching polytope. The
perfect matching polytope PM(G) of a graph G(V,E) is a polytope in the (real) edge space,1

i.e., PM(G) ⊆ RE . For any perfect matching M of G, consider its incidence vector xM =
(xMe )e∈E ∈ RE given by

xMe =

{
1, if e ∈M,

0, otherwise.

This vector is referred as a perfect matching point for any perfect matching M . The perfect
matching polytope of a graph G is defined to be the convex hull of all its perfect matching
points,

PM(G) = conv{xM |M is a perfect matching in G }.

The corners of PM(G) are exactly the perfect matching points of G.

1Here we depart from the usual definition of edge space as a vector space over Z/2Z.
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Any weight function w : E → R on the edges of a graph G can be naturally extended
to RE as a linear function: for any x = (xe)e∈E ∈ RE , define

w(x) = w · x =
∑
e∈E

w(e)xe.

Clearly, for any perfect matching M , we have w(M) = w(xM ). In particular, let M∗ be a
perfect matching in G of minimum weight. Then

w(M∗) = min{w(x) | x ∈ PM(G) }.

The task to isolate a perfect matching can now be rephrased as: construct a weight function w
such that w(x) has a unique minimum point in the perfect matching polytope PM(G).

Cycles play an important role in the context of perfect matchings, and also in our argu-
ments. One reason is that the symmetric difference of two perfect matchings is a union of
disjoint cycles. Each of these cycles has edges alternating from the two perfect matchings.
For an even cycle C = (e1, e2, . . . , ep), we define its circulation vector χC = (χCe )e∈E by

χCe =

{
(−1)j if e = ej , for some 1 ≤ j ≤ p,
0, otherwise.

Note that the definition actually depends on the starting edge e1. For our purpose, it does
not matter which edge of a cycle is chosen as e1. Let δ(v) denote the set of edges incident on
vertex v. Observe that χC satisfies ∑

e∈δ(v)

χCe = 0 v ∈ V. (1)

Now we come back to the perfect matching polytope. It is well known that for bipartite
graphs, it has a simple characterization in terms of linear inequalities.

Lemma 2.1 (See [LP86]). Let G(V,E) be a bipartite graph and x ∈ Rm. Then x ∈ PM(G)
if and only if ∑

e∈δ(v)

xe = 1 v ∈ V, (2)

xe ≥ 0 e ∈ E. (3)

Proof. Let Q be the polytope described by (2) and (3). Clearly, any perfect matching point
is in Q. Thus, PM(G) ⊆ Q. Note also that any integral point x ∈ Q is a perfect matching
point. The non-trivial part of the lemma is to show that all corners of the polytope Q are
integral. We argue that any non-integral point in Q is not a corner.

Let x ∈ Q be a non-integral point. It follows from (2) and (3) that for any x ∈ Q, we have
xe ≤ 1, for each e ∈ E. Hence, there exists an edge e1 ∈ E such that 0 < xe1 < 1. Let e1 be
incident on a vertex v1. As x satisfies (2), there must be another edge e2 incident on v1 such
that 0 < xe2 < 1. Let v2 be the other end point of e2. Then there must be another edge e3
incident on v2 such that 0 < xe3 < 1. We can keep finding such neighboring edges until we
get an edge we have already seen. This will give us a cycle C such that 0 < xe < 1, for each
e ∈ C.
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Now, choose an ε > 0 such that ε ≤ xe, for each e ∈ C. Let χC be the circulation vector
of C. We define two new points y = x + εχC and z = x − εχC . By the choice of ε, we have
ye, ze ≥ 0, for all e ∈ E. As χC satisfies (1), y and z also satisfy (2). Thus, y, z ∈ Q. As x is
the mid-point of the two points y, z ∈ Q, it cannot be a corner of Q.

Note that for an even cycle C, by equation (1) its circulation vector χC lies parallel to
the hyperplane defined by (2).

For general graphs, the polytope described by (2) and (3) can have vertices which are not
perfect matchings. Thus, the description does not capture the perfect matching polytope for
general graphs.

2.2 Faces of the Perfect Matching Polytope

Since w(x) is a linear function, the points in PM(G) that minimize w(x) will form a face
of PM(G). Note that a corner is also a face. The corners of this minimizing face will all
correspond to minimum weight perfect matchings. Any face of a polytope can be obtained by
replacing some of the inequalities in its description by equalities. In the case of the perfect
matching polytope, these inequalities are just the non-negativity constraints (3). Thus, by
Lemma 2.1, for any face F of PM(G), there exists a set S ⊆ E of edges such that F is
described by (2) and (3), and xe = 0 for e ∈ S.

Now, for any weight function w, let Fw be the face of PM(G) minimizing w(x). Let

Sw = { e ∈ E | Fw satisfies xe = 0 }.

Intuitively, the edges in Sw do not participate in any minimum weight perfect matching with
respect to w. Define Ew = E − Sw and Gw = (V,Ew). Hence, Gw is the subgraph of G that
contains only those edges that participate in some minimum weight perfect matching in G.

The following lemma is crucial for our weight construction. It shows that for any cycle C
in Gw, its circulation vector χC lies parallel to face Fw, which implies w(χC) = 0.

Lemma 2.2. Let w be a weight function on the edges of a graph G. Let C be a cycle in the
subgraph Gw. Then w(χC) = 0.

Proof. Recall that Fw is described by (2) and (3), and xe = 0, for e ∈ Sw. Observe that χC

also satisfies xe = 0 for all e ∈ Sw, and furthermore,
∑

e∈δ(v) χ
C
e = 0 for all v ∈ V by

equation (1). Therefore χC lies parallel to Fw.
By definition, all points x ∈ Fw have the same weight, i.e., w(x) = c0, for some constant c0.

Hence, vector w is orthogonal to the hyperplane Fw. We conclude that w is also orthogonal
to χC , and therefore w(χC) = 0.

3 Constructing an Isolating Weight Assignment

We will construct the weight function in rounds. In every round, we slightly modify the
current weight function to get a smaller minimizing face. In more detail, if wi is the weight
function in the i-th round, then in the next round, we will consider the weight function
wi+1 = Nwi + w′, for some weight function w′ and a number N which is larger than the
weights in w′. Note that Nwi gets precedence over w′ and thus, the face Fwi+1 is contained
in Fwi . We stop when the minimizing face is just a single point. Then the weight function
isolates a unique minimum weight perfect matching.
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To argue that the number of rounds is small, we use the cycle circulation vectors. Sup-
pose C is a cycle in graph Gwi . From Lemma 2.2, we have wi(χ

C) = 0. Now, we update the
weight function such that wi+1(χ

C) 6= 0. Then again from Lemma 2.2, we get C 6∈ Gwi+1 ,
i.e., at least one edge of C is missing from Ewi+1 . This gives us a way to destroy cycles. Note
that if Fwi+1 ⊆ Fwi , then Ewi+1 ⊆ Ewi . The strategy is to keep eliminating cycles until we
obtain a w such that Gw has no cycles. We claim that Fw will be a point then. Because if
not, then Fw has at least two perfect matching points and union of two perfect matchings
gives a set of cycles. Clearly, these cycles belong to Gw.

It is not clear whether one can construct a weight function w with small weights which
ensures w(χC) 6= 0 for all cycles C. However, there are standard ways to construct such a
weight function for any small set of cycles, see for example [FKS84].

Lemma 3.1. For any set C of s cycles in graph G, one can find a weight function w with
weights bounded by n2s, such that w(χC) 6= 0, for any C ∈ C.

Proof Idea. Let e1, e2, . . . , em be the edges of G. Define a weight function w by w(ei) = 2i−1,
for i = 1, 2, . . . ,m. One can show that one of the functions {w mod j | 2 ≤ j ≤ n2s } has the
desired property.

We will start with small length cycles, whose number is small. In each round, we will
double the cycle lengths we handle. We will show that we work with at most n4 cycles in
one round. Thus, the weights we get from Lemma 3.1 will be bounded by n6. Consider the
following weighting scheme. Let N > n6 and k = log n− 2. Let w0 be a weight function such
that w0(χ

C) 6= 0 for all cycles C of length 4 in G. For i = 1, 2, . . . , k − 1, define

w′i: a weight function such that w′i(χ
C) 6= 0 for all cycles C in Gwi−1 of length ≤ 2i+2.

wi: Nwi−1 + w′i.

From Lemma 2.2, there are no cycles of length ≤ 2i+2 in Gwi . Thus, Gwk
has no cycles

and Fwk
is a point.

Lemma 3.2. Weight function wk is isolating.

By the construction, the weights in wk are bounded by O(n6 logn). The following lemma
bounds the number of cycles in each round.

Lemma 3.3. Let H be a graph with n nodes that has no cycles of length ≤ r, for some even
r ≥ 4. Then H has ≤ n4 cycles of length ≤ 2r.

Proof. Let C be a cycle of length ≤ 2r in G. We choose 4 vertices u0, u1, u2, u3 on C which
divide it into 4 almost equal parts. We associate the tuple (u0, u1, u2, u3) with C. We claim
that C is the only cycle associated with (u0, u1, u2, u3). For the sake of contradiction, let there
be another such cycle C ′. Let p 6= p′ be paths of C and C ′, respectively, that connect the
same u-nodes. As the four segments of C are of equal length, we have |p| ≤ r/2 and similarly
|p′| ≤ r/2. Thus p and p′ create a cycle of length ≤ r, which is a contradiction. Hence, a
tuple is associated with only one cycle. The number of tuples of four nodes is bounded by n4,
and so is number of cycles of length ≤ 2r.

4 Extending the Technique

We discuss some settings where a similar approach works, respectively might work.

5



4.1 b -factors

A b -factor is a generalization of perfect matching. For a graph G(V,E) and a vector b ∈ NV ,
a b -factor is a set of edges such that vertex v has exactly bv edges incident to it. Note that
a 1 -factor is a perfect matching.

One can generalize our approach to isolate a b -factor in bipartite graphs. There is a simple
reduction from b -factors to perfect matching which works in NC (see, for example, [LP86,
Section 10.1]). However, by directly constructing an isolating weight assignment for b-factors,
we solve the problem in a black-box way, i.e., without looking at the given graph.

For bipartite graphs, the b-factor polytope is similar to the perfect matching polytope and
is given by ∑

e∈δ(v)

xe = bv v ∈ V,

xe ≥ 0 e ∈ E,
xe ≤ 1 e ∈ E.

Note that we have a new inequality here, namely xe ≤ 1. Thus, a face is defined by equalities
of the kind xe = 0 or xe = 1. Now, let us follow an approach similar to the perfect matching
case. For a weight function w, define Sw to be the set of edges for which Fw satisfies xe = 0
or xe = 1. Define Gw again as (V,E − Sw). We take the same definition of the circulation
vector of a cycle. The rest of the arguments work essentially in the same way. In particular,
we get an analog of Lemma 2.2. Note also that just like perfect matchings, the union of two
b-factors gives a set of cycles.

4.2 Matroid intersection

Another generalization of bipartite matching is matroid intersection. Here, we are given two
matroids on the same ground set and we are interested in common base sets. As mentioned
in the Introduction, two of the authors [GT16] generalized the current approach to isolate a
common base set of the two given matroids. The description of the common base polytope
requires exponentially many constraints. Still, one can find ‘nice’ descriptions for its faces
and that is the non-trivial part. The next step is to find an appropriate definition for the
circulation vectors. Basically, the circulation vectors should be defined in a way so that they
lie parallel to a given face. After this, following a similar line of argument gives an isolating
weight function.

4.3 Perfect matching in general graphs

The case of perfect matching in general graphs is intriguing. The perfect matching polytope
requires exponentially many constraints to characterize it. Together with (2) and (3), we have
a constraint for each odd cut,∑

e∈E(T,T )

xe ≥ 1 T ⊆ V is an odd subset of size ≥ 3.

To describe a face here, we have equations of the kind xe = 0 and
∑

e∈E(T,T ) xe = 1.
The crucial point is how to define a circulation vector. These must be some chosen vectors

which lie parallel to the current minimizing face. Their number needs to be small enough
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so that we can find a weight function assigning nonzero values to them. On the other hand,
there number should be large enough so that we get a significant reduction in the dimension
of the face. It is not clear if one can define such circulation vectors.

It will be interesting to know what are the most general polytopes for which our isolation
technique will work.
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A An Alternative Proof of Lemma 2.2

Here we discuss an alternate, combinatorial proof of our key lemma, Lemma 2.2. This proof,
using Hall’s theorem, was found by Rao, Shpilka, and Wigderson and was first reported
in [GG15]. Afterwards, we compare their proof with ours.

Lemma A.1. Let G(V,E) be a d-regular bipartite multigraph. Then the edges of G can be
partitioned into d many perfect matchings.

Proof. By induction on d. For d = 1, the edges E form precisely one perfect matching.
Now let d > 1. Then by the pigeonhole principle, G satisfies Hall’s criterion; that is, the
neighborhood of any set of k vertices on one side of the bipartition has size ≥ k. Thus G has
a perfect matching M by Hall’s theorem. Removing M from G results in a (d − 1)-regular
bipartite multigraph.

Alternate proof of Lemma 2.2. Let q be the minimum weight of a perfect matching in G, and
suppose that G has d > 0 many minimum weight perfect matchings. Let G′w be the bipartite
multigraph obtained by taking the disjoint union of these perfect matchings. Then G′w is a
d-regular bipartite multigraph with the same edges as Gw except for multiplicity. The total
weight of G′w is dq.

Suppose G′w has a cycle C with w(χC) 6= 0. Coloring the edges along C alternately
red and blue, the two colors of edges have different total weight. Suppose that the red edges
outweigh the blue edges. Let G′′w be the multigraph obtained from G′w by removing all the red
edges and adding a single duplicate of each blue edge. Then G′′w is also a d-regular bipartite
multigraph but with total weight < dq. By Lemma A.1, graph G′′w is the disjoint union of d
many perfect matchings, but now at least one of these matchings must have weight < q, and
this matching is also a perfect matching of G. Hence, we have a contradiction.

The two proofs of Lemma 2.2 relate closely to each other. Suppose x1, . . . , xd are the
perfect matching points in RE corresponding to the minimum-weight perfect matchings of G.
Let s =

∑d
i=1 xi be the sum of these points. Note that s is the characteristic vector of the

multigraph G′w in the proof above. Let c = s/d be the centroid of these points. The point c
clearly lies in the face Fw.

Suppose we orient C so that χCe = −1 for red edges e and χCe = +1 for blue edges e.
This would make w(χC) < 0 by assumption. Then swapping red edges for blue ones along C
amounts to displacing s by χC . That is, G′′w has characteristic vector s + χC . Dividing this
vector by d, we get c′ = c + 1

dχ
C . All constraints of F are satisfied by c′, so c′ ∈ F . On the

other hand, w(c′) = w(c)−w(χC) < w(c), so c′ lies outside F . This contradiction essentially
comes from the fact that χC was assumed not to be parallel to Fw.
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